100 research outputs found

    Haemophilus influenzae induces steroid-resistant inflammatory responses in COPD.

    Get PDF
    BACKGROUND: Chronic obstructive pulmonary disease (COPD) is an inflammatory disorder partially resistant to glucocorticoids. A reduced histone deacetylase (HDAC) activity has been proposed to explain this resistance. Haemophilus influenzae frequently colonizes the airways of COPD patients, where it enhances inflammation. The effects of Haemophilus influenzae on HDAC activity have not been investigated before. METHODS: The effects of the presence or absence of Haemophilus influenzae ex-vivo and in vitro were studied. To this end, we determined: (1) cytokine release in alveolar macrophages (AM) from 7 patients with COPD, 5 healthy smokers, 6 healthy non-smokers and (2) HDAC activity, nuclear factor kappa B (NF-κB) activation in a macrophage-like cell line (PMA-transformed U937 cells) co-cultured with epithelial cells. Experiments were repeated with dexamethasone (1 μM) and/or the HDAC enhancer theophylline (10 μM). RESULTS: Haemophilus influenzae induced a steroid-resistant inflammatory response in AM from COPD and controls and decreased HDAC activity, activated NF-κB and induced the secretion of several cytokines (IL-6, IL-8, IL-1β, IL-10 and TNF-α) (p < 0.001 for all comparisons) in the macrophage-like cell line. Dexamethasone reduced NF-κB activation but it did not modify HDAC activity. The addition of theophylline to dexamethasone increased HDAC activity and suppressed cytokine release completely, without modifying NF-κB activation. CONCLUSIONS: These results indicate that Haemophilus influenzae reduces HDAC activity and induces a NF-κB mediated inflammatory response that is only partially suppressed by glucocorticoids irrespective of having COPD. Yet, the latter can be fully restored by targeting HDAC activity

    A proposal for the withdrawal of inhaled corticosteroids in the clinical practice of chronic obstructive pulmonary disease

    Get PDF
    Chronic obstructive pulmonary disease; Exacerbations; Inhaled corticosteroidsMalaltia pulmonar obstructiva crònica; Empitjorament; Corticoesteroides inhalatsEnfermedad pulmonar obstructiva crónica; Empeoramiento; Corticoesteroides inhaladosAccording to the current clinical practice guidelines for chronic obstructive pulmonary disease (COPD), the addition of inhaled corticosteroids (ICS) to long-acting β2 agonist therapy is recommended in patients with moderate-to-severe disease and an increased risk of exacerbations. However, ICS are largely overprescribed in clinical practice, and most patients are unlikely to benefit from long-term ICS therapy.Evidence from recent randomized-controlled trials supports the hypothesis that ICS can be safely and effectively discontinued in patients with stable COPD and in whom ICS therapy may not be indicated, without detrimental effects on lung function, health status, or risk of exacerbations. This article summarizes the evidence supporting the discontinuation of ICS therapy, and proposes an algorithm for the implementation of ICS withdrawal in patients with COPD in clinical practice.Given the increased risk of potentially serious adverse effects and complications with ICS therapy (including pneumonia), the use of ICS should be limited to the minority of patients in whom the treatment effects outweigh the risks

    Severe T2-high asthma in the biologics era: European experts' opinion

    Get PDF
    The European Respiratory Biologics Forum gathered participants from 21 countries in Madrid, Spain, to discuss the management and treatment of severe asthma in the era of biologics. The current insights on the pathophysiology of severe asthma were discussed, as well as the role of respiratory biologics in clinical practice and strategies for eliminating chronic use of oral corticosteroids. The participants also highlighted the key challenges in identifying patients with severe asthma based on phenotypes, biomarkers and treatable traits, and the existing problems in patient referral to specialist care. The monitoring of treatment was debated and the need for a change towards precision medicine and personalised care was emphasised throughout the meeting. This review provides a summary of the discussions and highlights important concerns identified by the participants regarding the current management of severe asthma

    Prevalence of reduced lung diffusing capacity and CT scan findings in smokers without airflow limitation: a population-based study

    Get PDF
    Exercise; Lung Physiology; Tobacco and the lungEjercicio; Fisiología Pulmonar; Tabaco y pulmónExercici; Fisiologia pulmonar; Tabac i pulmóBackground Population distribution of reduced diffusing capacity of the lungs for carbon monoxide (DLCO) in smokers and main consequences are not properly recognised. The objectives of this study were to describe the prevalence of reduced DLCO in a population-based sample of current and former smoker subjects without airflow limitation and to describe its morphological, functional and clinical implications. Methods A sample of 405 subjects aged 40 years or older with postbronchodilator forced expiratory volume in 1 s/forced vital capacity (FVC) >0.70 was obtained from a random population-based sample of 9092 subjects evaluated in the EPISCAN II study. Baseline evaluation included clinical questionnaires, exhaled carbon monoxide (CO) measurement, spirometry, DLCO determination, 6 min walk test, routine blood analysis and low-dose CT scan with evaluation of lung density and airway wall thickness. Results In never, former and current smokers, prevalence of reduced DLCO was 6.7%, 14.4% and 26.7%, respectively. Current and former smokers with reduced DLCO without airflow limitation were younger than the subjects with normal DLCO, and they had greater levels of dyspnoea and exhaled CO, greater pulmonary artery diameter and lower spirometric parameters, 6 min walk distance, daily physical activity and plasma albumin levels (all p<0.05), with no significant differences in other chronic respiratory symptoms or CT findings. FVC and exhaled CO were identified as independent risk factors for low DLCO. Conclusion Reduced DLCO is a frequent disorder among smokers without airflow limitation, associated with decreased exercise capacity and with CT findings suggesting that it may be a marker of smoking-induced early vascular damage.The EPISCAN II study has been a GlaxoSmithKline sponsored study (grant number: not applicable)

    Unravelling young COPD and pre-COPD in the general population

    Get PDF
    COPD; General populationMPOC; Població generalEPOC; Población generalBackground Chronic obstructive pulmonary disease (COPD) is commonly diagnosed when the airflow limitation is well established and symptomatic. We aimed to identify individuals at risk of developing COPD according to the concept of pre-COPD and compare their clinical characteristics with 1) those who have developed the disease at a young age, and 2) the overall population with and without COPD. Methods The EPISCAN II study is a cross-sectional, population-based study that aims to investigate the prevalence of COPD in Spain in subjects ≥40 years of age. Pre-COPD was defined as the presence of emphysema >5% and/or bronchial thickening by computed chromatography (CT) scan and/or diffusing capacity of the lung for carbon monoxide (DLCO) 0.70. Young COPD was defined as FEV1/FVC <0.70 in a subject ≤50 years of age. Demographic and clinical characteristics were compared among pre-COPD, young COPD and the overall population with and without COPD. Results Among the 1077 individuals with FEV1/FVC 0.70, 350 underwent both DLCO testing and chest CT scanning. Of those, 78 (22.3%) subjects fulfilled the definition of pre-COPD. Subjects with pre-COPD were older, predominantly women, less frequently active or ex-smokers, with less frequent previous diagnosis of asthma but with higher symptomatic burden than those with young COPD. Conclusions 22.3% of the studied population was at risk of developing COPD, with similar symptomatic and structural changes to those with well-established disease without airflow obstruction. This COPD at-risk population is different from those that develop COPD at a young age.The EPISCAN II study was sponsored by GlaxoSmithKline

    Distribution and Outcomes of a Phenotype- Based Approach to Guide COPD Management: Results from the CHAIN Cohort

    Get PDF
    Rationale The Spanish guideline for COPD (GesEPOC) recommends COPD treatment according to four clinical phenotypes: non-exacerbator phenotype with either chronic bronchitis or emphy- sema (NE), asthma-COPD overlap syndrome (ACOS), frequent exacerbator phenotype with emphysema (FEE) or frequent exacerbator phenotype with chronic bronchitis (FECB). How- ever, little is known on the distribution and outcomes of the four suggested phenotypes. Objective We aimed to determine the distribution of these COPD phenotypes, and their relation with one-year clinical outcomes. Methods We followed a cohort of well-characterized patients with COPD up to one-year. Baseline characteristics, health status (CAT), BODE index, rate of exacerbations and mortality up to one year of follow-up were compared between the four phenotypes. Results Overall, 831 stable COPD patients were evaluated. They were distributed as NE, 550 (66.2%); ACOS, 125 (15.0%); FEE, 38 (4.6%); and FECB, 99 (11.9%); additionally 19 (2.3%) COPD patients with frequent exacerbations did not fulfill the criteria for neither FEE nor FECB. At baseline, there were significant differences in symptoms, FEV 1 and BODE index (all p<0.05). The FECB phenotype had the highest CAT score (17.1±8.2, p<0.05 compared to the other phenotypes). Frequent exacerbator groups (FEE and FECB) were receiving more pharmacological treatment at baseline, and also experienced more exacer- bations the year after (all p<0.05) with no differences in one-year mortality. Most of NE (93%) and half of exacerbators were stable after one year. Conclusions There is an uneven distribution of COPD phenotypes in stable COPD patients, with signifi- cant differences in demographics, patient-centered outcomes and health care resources use

    Using the Electronic Nose to Identify Airway Infection During COPD Exacerbations

    Full text link
    Background The electronic nose (e-nose) detects volatile organic compounds (VOCs) in exhaled air. We hypothesized that the exhaled VOCs print is different in stable vs. exacerbated patients with chronic obstructive pulmonary disease (COPD), particularly if the latter is associated with airway bacterial infection, and that the e-nose can distinguish them. Methods Smell-prints of the bacteria most commonly involved in exacerbations of COPD (ECOPD) were identified in vitro. Subsequently, we tested our hypothesis in 93 patients with ECOPD, 19 of them with pneumonia, 50 with stable COPD and 30 healthy controls in a cross-sectional case-controlled study. Secondly, ECOPD patients were re-studied after 2 months if clinically stable. Exhaled air was collected within a Tedlar bag and processed by a Cynarose 320 e-nose. Breath-prints were analyzed by Linear Discriminant Analysis (LDA) with "One Out" technique and Sensor logic Relations (SLR). Sputum samples were collected for culture. Results ECOPD with evidence of infection were significantly distinguishable from non-infected ECOPD (p = 0.018), with better accuracy when ECOPD was associated to pneumonia. The same patients with ECOPD were significantly distinguishable from stable COPD during follow-up (p = 0.018), unless the patient was colonized. Additionally, breath-prints from COPD patients were significantly distinguished from healthy controls. Various bacteria species were identified in culture but the e-nose was unable to identify accurately the bacteria smell-print in infected patients. Conclusion E-nose can identify ECOPD, especially if associated with airway bacterial infection or pneumonia

    Bone marrow characterization in COPD: a multi-level network analysis

    Get PDF
    BACKGROUND: Bone marrow (BM) produces hematopoietic and progenitor cells that contribute to distant organ inflammation and repair. Chronic obstructive pulmonary disease (COPD) is characterized by defective lung repair. Yet, BM composition has not been previously characterized in COPD patients. METHODS: In this prospective and controlled study, BM was obtained by sternum fine-needle aspiration in 35 COPD patients and 25 healthy controls (10 smokers and 15 never-smokers). BM cell count and immunophenotype were determined by microscopy and flow cytometry, respectively. Circulating inflammatory (C-reactive protein, IL-6, IL-8) and repair markers (HGF, IGF, TGF-β, VEGF) were quantified by ELISA. Results were integrated by multi-level network correlation analysis. RESULTS: We found that: (1) there were no major significant pair wise differences between COPD patients and controls in the BM structural characteristics; (2) multi-level network analysis including patients and controls identifies a relation between immunity, repair and lung function not previously described, that remains in the COPD network but is absent in controls; and (3) this novel network identifies eosinophils as a potential mediator relating immunity and repair, particularly in patients with emphysema. CONCLUSIONS: Overall, these results suggest that BM is activated in COPD with impaired repair capacity in patients with more emphysema and/or higher circulating eosinophils

    Validation of the ‘Test of the Adherence to Inhalers’ (TAI) for Asthma and COPD Patients

    Get PDF
    Background: To validate the ‘Test of Adherence to Inhalers’ (TAI), a 12-item questionnaire designed to assess the adherence to inhalers in patients with COPD or asthma. Methods: A total of 1009 patients with asthma or COPD participated in a cross-sectional multicenter study. Patients with electronic adherence ≥80% were defined as adherents. Construct validity, internal validity, and criterion validity were evaluated. Self-reported adherence was compared with the Morisky-Green questionnaire. Results: Factor analysis study demonstrated two factors, factor 1 was coincident with TAI patient domain (items 1 to 10) and factor 2 with TAI health-care professional domain (items 11 and 12). The Cronbach's alpha was 0.860 and the test-retest reliability 0.883. TAI scores correlated with electronic adherence (ρ=0.293, p=0.01). According to the best cut-off for 10 items (score 50, area under the ROC curve 0.7), 569 (62.5%) patients were classified as non-adherents. The non-adherence behavior pattern was: erratic 527 (57.9%), deliberate 375 (41.2%), and unwitting 242 (26.6%) patients. As compared to Morisky-Green test, TAI showed better psychometric properties. Conclusions: The TAI is a reliable and homogeneous questionnaire to identify easily non-adherence and to classify from a clinical perspective the barriers related to the use of inhalers in asthma and COPD

    Relationship between Respiratory Microbiome and Systemic Inflammatory Markers in COPD : A Pilot Study

    Get PDF
    The respiratory microbiome may influence the development and progression of COPD by modulating local immune and inflammatory events. We aimed to investigate whether relative changes in respiratory bacterial abundance are also associated with systemic inflammation, and explore their relationship with the main clinical COPD phenotypes. Multiplex analysis of inflammatory markers and transcript eosinophil-related markers were analyzed on peripheral blood in a cohort of stable COPD patients (n = 72). Respiratory microbiome composition was analyzed by 16S rRNA microbial sequencing on spontaneous sputum. Spearman correlations were applied to test the relationship between the microbiome composition and systemic inflammation. The concentration of the plasma IL-8 showed an inverted correlation with the relative abundance of 17 bacterial genera in the whole COPD cohort. COPD patients categorized as eosinophilic showed positive relationships with blood eosinophil markers and inversely correlated with the degree of airway obstruction and the number of exacerbations during the previous year. COPD patients categorized as frequent exacerbators were enriched with the bacterial genera Pseudomonas which, in turn, was positively associated with the severity of airflow limitation and the prior year's exacerbation history. The associative relationships of the sputum microbiome with the severity of the disease emphasize the relevance of the interaction between the respiratory microbiota and systemic inflammation
    corecore