91 research outputs found

    Unmasking silent neurotoxicity following developmental exposure to environmental toxicants

    Get PDF
    AbstractSilent neurotoxicity, a term introduced approximately 25years ago, is defined as a persistent change to the nervous system that does not manifest as overt evidence of toxicity (i.e. it remains clinically unapparent) unless unmasked by experimental or natural processes. Silent neurotoxicants can be challenging for risk assessors, as the multifactorial experiments needed to reveal their effects are seldom conducted, and they are not addressed by current study design guidelines. This topic was the focus of a symposium addressing the interpretation and use of silent neurotoxicity data in human health risk assessments of environmental toxicants at the annual meeting of the Developmental Neurotoxicology Society (previously the Neurobehavioral Teratology Society) on June 30th, 2014. Several factors important to the design and interpretation of studies assessing the potential for silent neurotoxicity were discussed by the panelists and audience members. Silent neurotoxicity was demonstrated to be highly specific to the characteristics of the animals being examined, the unmasking agent tested, and the behavioral endpoint(s) evaluated. Overall, the experimental examples presented highlighted a need to consider common adverse outcomes and common biological targets for chemical and non-chemical stressors, particularly when the exposure and stressors are known to co-occur. Risk assessors could improve the evaluation of silent neurotoxicants in assessments through specific steps from researchers, including experiments to reveal the molecular targets and mechanisms that may result in specific types of silent neurotoxicity, and experiments with complex challenges reminiscent of the human situation

    Behavioral Changes in Aging but Not Young Mice after Neonatal Exposure to the Polybrominated Flame Retardant DecaBDE

    Get PDF
    BACKGROUND: After several decades of commercial use, the flame-retardant chemicals polybrominated diphenyl ethers (PBDEs) and their metabolites are pervasive environmental contaminants and are detected in the human body. Decabrominated diphenyl ether (decaBDE) is currently the only PBDE in production in the United States. OBJECTIVES: Little is known about the health effects of decaBDE. In the present study we examined the effects of neonatal decaBDE exposure on behavior in mice at two ages. METHODS: Neonatal male and female C57BL6/J mice were exposed to a daily oral dose of 0, 6, or 20 mg/kg decaBDE from postnatal days 2 through 15. Two age groups were examined: a cohort that began training during young adulthood and an aging cohort of littermates that began training at 16 months of age. Both cohorts were tested on a series of operant procedures that included a fixed-ratio I schedule of reinforcement, a fixed-interval (FI) 2-min schedule, and a light-dark visual discrimination. RESULTS: We observed minimal effects on the light-dark discrimination in the young cohort, with no effects on the other tasks. The performance of the aging cohort was significantly affected by decaBDE. On the FI schedule, decaBDE exposure increased the overall response rate. On the light-dark discrimination, older treated mice learned the task more slowly, made fewer errors on the first-response choice of a trial but more perseverative errors after an initial error, and had lower latencies to respond compared with controls. Effects were observed in both dose groups and sexes on various measures. CONCLUSIONS: These findings suggest that neonatal decaBDE exposure produces effects on behavioral tasks in older but not younger animals. The behavioral mechanisms responsible for the pattern of observed effects may include increased impulsivity, although further research is required

    Beyond the looking glass: recent advances in understanding the impact of environmental exposures on neuropsychiatric disease

    Get PDF
    The etiologic pathways leading to neuropsychiatric diseases remain poorly defined. As genomic technologies have advanced over the past several decades, considerable progress has been made linking neuropsychiatric disorders to genetic underpinnings. Interest and consideration of nongenetic risk factors (e.g., lead exposure and schizophrenia) have, in contrast, lagged behind heritable frameworks of explanation. Thus, the association of neuropsychiatric illness to environmental chemical exposure, and their potential interactions with genetic susceptibility, are largely unexplored. In this review, we describe emerging approaches for considering the impact of chemical risk factors acting alone and in concert with genetic risk, and point to the potential role of epigenetics in mediating exposure effects on transcription of genes implicated in mental disorders. We highlight recent examples of research in nongenetic risk factors in psychiatric disorders that point to potential shared biological mechanisms—synaptic dysfunction, immune alterations, and gut–brain interactions. We outline new tools and resources that can be harnessed for the study of environmental factors in psychiatric disorders. These tools, combined with emerging experimental evidence, suggest that there is a need to broadly incorporate environmental exposures in psychiatric research, with the ultimate goal of identifying modifiable risk factors and informing new treatment strategies for neuropsychiatric disease

    Izloženost štakora niskim razinama olova tijekom fetalnog i ranoga postnatalnog razvoja šteti učenju pasivnim izbjegavanjem kazne kasnije u odrasloj dobi

    Get PDF
    This follow-up study investigated the effects of low-level lead exposure during prenatal and early postnatal period on learning and memory in rats immediately after exposure has ceased at weaning and later in their adulthood. Male Wistar-derived rats were exposed to lead (as 0.2 % lead acetate solution) through their mothers during pregnancy and lactation until they were weaned. Mothers of control rats were given tap water during pregnancy and lactation. All pups were weaned on tap water at 21 days of age and were followed up until 120 days old. Low-level lead exposure did not affect their body weight at any time during the experiment. Blood lead in the exposed rats was significantly higher on postnatal day 22 and dropped to control values by day 120. Passive avoidance test showed impaired memory retention in the exposed rats on postnatal days 25 and 120. This suggests that exposure to low-lead levels during foetal and early postnatal development of brain tissue can cause memory impairment that lasts into adulthood.Cilj je ovoga prospektivnog istraživanja bio utvrditi kako izloženost niskim razinama olova tijekom gestacije i ranoga postnatalnog razvoja utječe na učenje i pamćenje u štakora odmah nakon prestanka izloženosti (odbijanjem od sise) te kasnije u odrasloj dobi. Mužjaci štakora izloženi su olovu u obliku 0,2 %-tne otopine olovova acetata preko majke tijekom gestacije te za cijeloga trajanja laktacije sve do odbijanja od sise. Sve to vrijeme majke kontrolnih štakora dobivale su vodu iz pipe. Svi su štakorčići odbijeni od sise 21 dan nakon okota i otada piju vodu iz pipe. Praćeni su do 120. dana života. Izloženost niskim razinama olova nije dovela do razlika u tjelesnoj težini između izloženih i kontrolnih štakorčića. Razine olova u krvi bile su značajno više u izloženih štakora 22 dana od okota, da bi do 120. dana pale na razinu u kontrolnih štakora. Test pasivnoga izbjegavanja pokazao je oštećenje pamćenja u izloženih štakora 25. i 120. dana nakon okota. To potvrđuje da izloženost niskim razinama olova tijekom fetalnoga i ranoga postnatalnog razvoja moždanog tkiva može dovesti to oštećenja u pamćenju koje traje sve do odrasle dobi

    Concordant Signaling Pathways Produced by Pesticide Exposure in Mice Correspond to Pathways Identified in Human Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) is a neurodegenerative disease in which the etiology of 90 percent of the patients is unknown. Pesticide exposure is a major risk factor for PD, and paraquat (PQ), pyridaben (PY) and maneb (MN) are amongst the most widely used pesticides. We studied mRNA expression using transcriptome sequencing (RNA-Seq) in the ventral midbrain (VMB) and striatum (STR) of PQ, PY and paraquat+maneb (MNPQ) treated mice, followed by pathway analysis. We found concordance of signaling pathways between the three pesticide models in both the VMB and STR as well as concordance in these two brain areas. The concordant signaling pathways with relevance to PD pathogenesis were e.g. axonal guidance signaling, Wnt/β-catenin signaling, as well as pathways not previously linked to PD, e.g. basal cell carcinoma, human embryonic stem cell pluripotency and role of macrophages, fibroblasts and endothelial cells in rheumatoid arthritis. Human PD pathways previously identified by expression analysis, concordant with VMB pathways identified in our study were axonal guidance signaling, Wnt/β-catenin signaling, IL-6 signaling, ephrin receptor signaling, TGF-β signaling, PPAR signaling and G-protein coupled receptor signaling. Human PD pathways concordant with the STR pathways in our study were Wnt/β-catenin signaling, axonal guidance signaling and G-protein coupled receptor signaling. Peroxisome proliferator activated receptor delta (Ppard) and G-Protein Coupled Receptors (GPCRs) were common genes in VMB and STR identified by network analysis. In conclusion, the pesticides PQ, PY and MNPQ elicit common signaling pathways in the VMB and STR in mice, which are concordant with known signaling pathways identified in human PD, suggesting that these pathways contribute to the pathogenesis of idiopathic PD. The analysis of these networks and pathways may therefore lead to improved understanding of disease pathogenesis, and potential novel therapeutic targets

    Project TENDR: Targeting environmental neuro-developmental risks. the TENDR consensus statement

    Get PDF
    Children in America today are at an unacceptably high risk of developing neurodevelopmental disorders that affect the brain and nervous system including autism, attention deficit hyperactivity disorder, intellectual disabilities, and other learning and behavioral disabilities. These are complex disorders with multiple causes—genetic, social, and environmental. The contribution of toxic chemicals to these disorders can be prevented. Approach: Leading scientific and medical experts, along with children’s health advocates, came together in 2015 under the auspices of Project TENDR: Targeting Environmental Neuro-Developmental Risks to issue a call to action to reduce widespread exposures to chemicals that interfere with fetal and children’s brain development. Based on the available scientific evidence, the TENDR authors have identified prime examples of toxic chemicals and pollutants that increase children’s risks for neurodevelopmental disorders. These include chemicals that are used extensively in consumer products and that have become widespread in the environment. Some are chemicals to which children and pregnant women are regularly exposed, and they are detected in the bodies of virtually all Americans in national surveys conducted by the U.S. Centers for Disease Control and Prevention. The vast majority of chemicals in industrial and consumer products undergo almost no testing for developmental neurotoxicity or other health effects. Conclusion: Based on these findings, we assert that the current system in the United States for evaluating scientific evidence and making health-based decisions about environmental chemicals is fundamentally broken. To help reduce the unacceptably high prevalence of neurodevelopmental disorders in our children, we must eliminate or significantly reduce exposures to chemicals that contribute to these conditions. We must adopt a new framework for assessing chemicals that have the potential to disrupt brain development and prevent the use of those that may pose a risk. This consensus statement lays the foundation for developing recommendations to monitor, assess, and reduce exposures to neurotoxic chemicals. These measures are urgently needed if we are to protect healthy brain development so that current and future generations can reach their fullest potential

    Prenatal exposures and exposomics of asthma

    Get PDF
    This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental medi
    corecore