69 research outputs found
Methylphenidate Exposure Induces Dopamine Neuron Loss and Activation of Microglia in the Basal Ganglia of Mice
Background: Methylphenidate (MPH) is a psychostimulant that exerts its pharmacological effects via preferential blockade of the dopamine transporter (DAT) and the norepinephrine transporter (NET), resulting in increased monoamine levels in the synapse. Clinically, methylphenidate is prescribed for the symptomatic treatment of ADHD and narcolepsy; although lately, there has been an increased incidence of its use in individuals not meeting the criteria for these disorders. MPH has also been misused as a ‘‘cognitive enhancer’ ’ and as an alternative to other psychostimulants. Here, we investigate whether chronic or acute administration of MPH in mice at either 1 mg/kg or 10 mg/kg, affects cell number and gene expression in the basal ganglia. Methodology/Principal Findings: Through the use of stereological counting methods, we observed a significant reduction (,20%) in dopamine neuron numbers in the substantia nigra pars compacta (SNpc) following chronic administration of 10 mg/kg MPH. This dosage of MPH also induced a significant increase in the number of activated microglia in the SNpc. Additionally, exposure to either 1 mg/kg or 10 mg/kg MPH increased the sensitivity of SNpc dopaminergic neurons to the parkinsonian agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Unbiased gene screening employing Affymetrix GeneChipH HT MG-430 PM revealed changes in 115 and 54 genes in the substantia nigra (SN) of mice exposed to 1 mg/kg and 10 mg/kg MPH doses, respectively. Decreases in the mRNA levels of gdnf, dat1, vmat2, and th in the substantia nigr
Cytoskeletal control of B cell responses to antigens.
The actin cytoskeleton is essential for cell mechanics and has increasingly been implicated in the regulation of cell signalling. In B cells, the actin cytoskeleton is extensively coupled to B cell receptor (BCR) signalling pathways, and defects of the actin cytoskeleton can either promote or suppress B cell activation. Recent insights from studies using single-cell imaging and biophysical techniques suggest that actin orchestrates BCR signalling at the plasma membrane through effects on protein diffusion and that it regulates antigen discrimination through the biomechanics of immune synapses. These mechanical functions also have a role in the adaptation of B cell subsets to specialized tasks during antibody responses
Structure of a VHH isolated from a naïve phage display library
Abstract Objective To determine the X-ray structure and biophysical properties of a Camelid VHH isolated from a naïve phage display library. Results Single domain antibodies (VHH) derived from the unique immune system of the Camelidae family have gained traction as useful tools for biotechnology as well as a source of potentially novel therapeutics. Here we report the structure and biophysical characterization of a VHH originally isolated from a naïve camelid phage display library. VHH R419 has a melting temperate of 66 °C and was found to be a monomer in solution. The protein crystallized in space group P6522 and the structure was solved by molecular replacement to a resolution of 1.5 Å. The structure revealed a flat paratope with CDR loops that could be classified into existing canonical loop structures. A combination of high expression yield, stability and rapid crystallization might make R419 into a candidate scaffold for CDR grafting and homology modeling
Glycosylation of MUC1 influences the binding of a therapeutic antibody by altering the conformational equilibrium of the antigen
In cancer cells, the glycoprotein Mucin 1 (MUC1) undergoes abnormal, truncated glycosylation. The truncated glycosylation exposes cryptic peptide epitopes that can be recognized by antibodies. Since these immunogenic regions are cancer specific, they represent ideal targets for therapeutic antibodies. We investigated the role of tumor-specific glycosylation on antigen recognition by the therapeutic antibody AR20.5. We explored the affinity of AR20.5 to a synthetic cancer-specific MUC1 glycopeptide and peptide. The antibody bound to the glycopeptide with an order of magnitude stronger affinity than the naked peptide. Given these results, we postulated that AR20.5 must specifically bind the carbohydrate as well as the peptide. Using X-ray crystallography, we examined this hypothesis by determining the structure of AR20.5 in complex with both peptide and glycopeptide. Surprisingly, the structure revealed that the carbohydrate did not form any specific polar contacts with the antibody. The high affinity of AR20.5 for the glycopeptide and the lack of specific binding contacts support a hypothesis that glycosylation of MUC1 stabilizes an extended bioactive conformation of the peptide recognized by the antibody. Since high affinity binding of AR20.5 to the MUC1 glycopeptide may not driven by specific antibody-antigen contacts, but rather evidence suggests that glycosylation alters the conformational equilibrium of the antigen, which allows the antibody to select the correct conformation. This study suggests a novel mechanism of antibody-antigen interaction and also suggests that glycosylation of MUC1 is important for the generation of high affinity therapeutic antibodies
In situ proteolysis, crystallization and preliminary X-ray diffraction analysis of a VHH that binds listeria internalin B
The variable region of camelid heavy-chain antibodies produces the smallest known antibody fragment with antigen-binding capability (a V<inf>H</inf>H). The V<inf>H</inf>H R303 binds internalin B (InlB), a virulence factor expressed by the pathogen Listeria monocytogenes. InlB is critical for initiation of Listeria infection, as it binds a receptor (c-Met) on epithelial cells, triggering the entry of bacteria into host cells. InlB is surface-exposed and is required for virulence, hence a V<inf>H</inf>H targeting InlB has potential applications for pathogen detection or therapeutic intervention. Here, the expression, purification, crystallization and X-ray diffraction of R303 are reported. Crystals of R303 were obtained following in situ proteolysis with trypsin. Gel filtration and SDS-PAGE revealed that trypsin removed the C-terminal tag region of R303, facilitating crystal formation. Crystals of R303 diffracted to 1.3\uc5 resolution and belonged to the monoclinic space group P21, with unit-cell parameters a = 46.4, b = 31.2, c = 74.8\uc5, \u3b2 = 93.8\ub0. The crystals exhibited a Matthews coefficient of 1.95\uc53Da-1 with two molecules in the asymmetric unit.Peer reviewed: YesNRC publication: Ye
- …