41 research outputs found

    π+\pi^+ photoproduction on the proton for photon energies from 0.725 to 2.875 GeV

    Full text link
    Differential cross sections for the reaction Îłp→nπ+\gamma p \to n \pi^+ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.725 to 2.875 GeV. Where available, the results obtained here compare well with previously published results for the reaction. Agreement with the SAID and MAID analyses is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been made up to 2.7 GeV. Resonance couplings have been extracted and compared to previous determinations. With the addition of these cross sections to the world data set, significant changes have occurred in the high-energy behavior of the SAID cross-section predictions and amplitudes.Comment: 18 pages, 10 figure

    The impact of the revised 17 O(p, \u3b1)14 N reaction rate on 17 O stellar abundances and yields

    Get PDF
    Context. Material processed by the CNO cycle in stellar interiors is enriched in 17O. When mixing processes from the stellar surface reach these layers, as occurs when stars become red giants and undergo the first dredge up, the abundance of 17O increases. Such an occurrence explains the drop of the 16O/17O observed in RGB stars with mass larger than solar mass 1:5M solar mass. As a consequence, the interstellar medium is continuously polluted by the wind of evolved stars enriched in 17O . Aims. Recently, the Laboratory for Underground Nuclear Astrophysics (LUNA) collaboration released an improved rate of the 17O(p; a)14N reaction. In this paper we discuss the impact that the revised rate has on the 16O/17O ratio at the stellar surface and on 17O stellar yields. Methods.We computed stellar models of initial mass between 1 and 20M solar mass and compared the results obtained by adopting the revised rate of the 17O(p; a)14N to those obtained using previous rates. Results. The post-first dredge up 16O/17O ratios are about 20% larger than previously obtained. Negligible variations are found in the case of the second and the third dredge up. In spite of the larger 17O(p; a)14N rate, we confirm previous claims that an extra-mixing process on the red giant branch, commonly invoked to explain the low carbon isotopic ratio observed in bright low-mass giant stars, marginally affects the 16O/17O ratio. Possible effects on AGB extra-mixing episodes are also discussed. As a whole, a substantial reduction of 17O stellar yields is found. In particular, the net yield of stars with mass ranging between 2 and 20 solar mass is 15 to 40% smaller than previously estimated. Conclusions. The revision of the 17O(p; a)14N rate has a major impact on the interpretation of the 16O/17O observed in evolved giants, in stardust grains and on the 17O stellar yields

    Photodisintegration of 4^4He into p+t

    Full text link
    The two-body photodisintegration of 4^4He into a proton and a triton has been studied using the CEBAF Large-Acceptance Spectrometer (CLAS) at Jefferson Laboratory. Real photons produced with the Hall-B bremsstrahlung-tagging system in the energy range from 0.35 to 1.55 GeV were incident on a liquid 4^4He target. This is the first measurement of the photodisintegration of 4^4He above 0.4 GeV. The differential cross sections for the γ\gamma4^4He→pt\to pt reaction have been measured as a function of photon-beam energy and proton-scattering angle, and are compared with the latest model calculations by J.-M. Laget. At 0.6-1.2 GeV, our data are in good agreement only with the calculations that include three-body mechanisms, thus confirming their importance. These results reinforce the conclusion of our previous study of the three-body breakup of 3^3He that demonstrated the great importance of three-body mechanisms in the energy region 0.5-0.8 GeV .Comment: 13 pages submitted in one tgz file containing 2 tex file and 22 postscrip figure

    Exclusive Photoproduction of the Cascade (Xi) Hyperons

    Full text link
    We report on the first measurement of exclusive Xi-(1321) hyperon photoproduction in gamma p --> K+ K+ Xi- for 3.2 < E(gamma) < 3.9 GeV. The final state is identified by the missing mass in p(gamma,K+ K+)X measured with the CLAS detector at Jefferson Laboratory. We have detected a significant number of the ground-state Xi-(1321)1/2+, and have estimated the total cross section for its production. We have also observed the first excited state Xi-(1530)3/2+. Photoproduction provides a copious source of Xi's. We discuss the possibilities of a search for the recently proposed Xi5-- and Xi5+ pentaquarks.Comment: submitted to Phys. Rev.

    The nuclear physics of the hydrogen burning in the Sun

    No full text
    Underground nuclear astrophysics focuses its efforts towards a deeper knowledge of the nuclear reactions that rule stellar evolution processes and enable the synthesis of the elements of the periodic table. Deep underground in the Gran Sasso laboratory, the cross-sections of the key reactions of the hydrogen burning have been measured right down to the energies of astrophysical interest. The main results obtained by the LUNA Collaboration are reviewed, and their contributions to the solution of the solar neutrino problem and to the age of the globular cluster are discussed

    Proton and deuteron radiative capture in light nuclei

    No full text
    Differential capture View the MathML source and View the MathML source cross sections have been measured at excitation energies between 17 and 41 MeV in 17F and 26 and 39 MeV in 17O at several angles in the 35\ub0\u2013135\ub0 interval. The (p, \u3b3o) data show, besides a direct capture term, the excitation of giant dipole resonances based on excited states having a probable 2p-1h structure. The main features of the deuteron capture cross section can be understood in terms of a semidirect mechanism with the two nucleons captured in the same single-particle configuration

    Hourly measurement of particulate concentrations with streaker samplers and optical methods

    No full text

    a tool for real time bottlenose dolphin monitoring in the Portofino

    No full text
    Bottlenose dolphin (Tursiops truncatus) is one of the Mediterranean cetaceans listed in the Annex II of Habitat Directive. The main objective is the creation of a virtual corridor for monitoring and surveillance of the transient and resident bottlenose dolphins. Concrete conservation actions take place in the Portofino MPA (Italy). We show the implementation of an interference avoidance system capable to track the dolphins, to identify threats and to prevent collisions by diffusing real time warning messages to all categories involved. Two detection units are placed one kilometer off the coast of Portofino headland. Each unit is a particular type of marine buoy (elastic beacon) equipped with four hydrophones and an acquisition system which can record the typical \u201csocial communication whistles\u201d emitted by the dolphins and the sounds emitted by boat engines. Signals are then sent on shore, via wi-fi, and elaborated to get the real time position of dolphins and boats. Upon reception of the warnings the boats present in the area will be invited to follow a protocol of conduct supervised by the Coast Guard. This approach will improve the species protection, the sustainable coexistence of dolphins and anthropic activities and will promote responsible usage of the sea, especially in one of the most touristic Marine Protected Area in Mediterranean Sea. We illustrate the technical details of the automatic system for bottlenose dolphins conservation and results of first ten months of observation will be reported. This study is part of the Life+ Nature Project \u201cARION\u201d co-funded by the European Commission

    A Permanent Automated Real-Time Passive Acoustic Monitoring System for Bottlenose Dolphin Conservation in the Mediterranean Sea.

    No full text
    Within the framework of the EU Life+ project named LIFE09 NAT/IT/000190 ARION, a permanent automated real-time passive acoustic monitoring system for the improvement of the conservation status of the transient and resident population of bottlenose dolphin (Tursiops truncatus) has been implemented and installed in the Portofino Marine Protected Area (MPA), Ligurian Sea. The system is able to detect the simultaneous presence of dolphins and boats in the area and to give their position in real time. This information is used to prevent collisions by diffusing warning messages to all the categories involved (tourists, professional fishermen and so on). The system consists of two gps-synchronized acoustic units, based on a particular type of marine buoy (elastic beacon), deployed about 1 km off the Portofino headland. Each one is equipped with a four-hydrophone array and an onboard acquisition system which can record the typical social communication whistles emitted by the dolphins and the sound emitted by boat engines. Signals are pre-filtered, digitized and then broadcast to the ground station via wi-fi. The raw data are elaborated to get the direction of the acoustic target to each unit, and hence the position of dolphins and boats in real time by triangulation
    corecore