1,292 research outputs found

    Spatio-temporal entanglement of twin photons: an intuitive picture

    Full text link
    We draw an intuitive picture of the spatio-temporal properties of the entangled state of twin photons, where they are described as classical wave-packets. This picture predicts a precise relation between their temporal and transverse spatial separations at the crystal output. The space-time coupling described by classical arguments turns out to determine in a precise way the spatio-temporal structure of the quantum entanglement, analysed by means of the biphotonic correlation and of the Schmidt dimensionality of the entanglement.Comment: 12 pages, 3 figure

    Body-scaled action in obesity during locomotion: Insights on the nature and extent of body representation disturbances

    Get PDF
    Objective Conscious perception of our own body, also known as body image, can influence body-scaled actions. Certain conditions such as obesity are frequently accompanied by a negative body image, leaving open the question if body-scaled actions are distorted in these individuals. Methods To shed light on this issue, we asked individuals affected by obesity to process dimensions of their own body in a real action: they walked in a straight-ahead direction, while avoiding collision with obstacles represented by door-like openings that varied in width. Results Participants affected by obesity showed a body rotation behavior similar to that of the healthy weighted, but differences emerged in parameters such as step length and velocity. Conclusion When participants with obesity walk through door-like openings, their body parts rotation is scaled according to their physical body dimensions; however, they might try to minimize risk of collision. Our study is in line with the hypothesis that unconscious body-scaled actions are related to emotional, cognitive and perceptual components of a negative body image

    Local Structure in Disordered Melilite Revealed by Ultrahigh Field 71Ga and 139La Solid‐State Nuclear Magnetic Resonance

    Get PDF
    Multinuclear Nuclear Magnetic Resonance (NMR) spectroscopy of quadrupolar nuclei at ultrahigh magnetic field provides compelling insight into the short‐range structure in a family of fast oxide ion electrolytes with La1+xSr1–xGa3O7+0.5x melilite structure. The striking resolution enhancement in the solid‐state 71Ga NMR spectra measured with the world’s unique series connected hybrid magnet operating at 35.2 T distinctly resolves Ga sites in four‐ and five‐fold coordination environments. Detection of five‐coordinate Ga centers in the site‐disordered La1.54Sr0.46Ga3O7.27 melilite is critical given that the GaO5 unit accommodates interstitial oxide ions and provides excellent transport properties. This work highlights the importance of ultrahigh magnetic fields for the detection of otherwise broad spectral features in systems containing quadrupolar nuclei and the potential of ensemble‐based computational approaches for the interpretation of NMR data acquired for site‐disordered materials.</jats:p

    Tucatinib's Journey from Clinical Development to Clinical Practice: New Horizons for HER2-Positive Metastatic Disease and Promising Prospects for Brain Metastatic Spread

    Get PDF
    : Approximately 20% of breast cancers (BCs) overexpress human epidermal growth factor receptor 2 (HER2), a transmembrane glycoprotein with tyrosine kinase activity, encoded by ERBB2 gene. Historically, HER2 overexpression has been linked with increased disease recurrence and a worse prognosis. However, the increasing availability of different anti-HER2 compounds and combinations is progressively improving HER2-positive BC outcome, thus requiring expertise to prioritize both overall survival (OS) prolongation and quality of life, without neglecting the accessibility to further treatment lines with a low attrition rate. In this context, tucatinib, an oral tyrosine kinase inhibitor, has recently been granted approval by regulatory agencies based on evidence from the HER2CLIMB, a clinical trial which randomized patients with metastatic BC to receive trastuzumab and capecitabine with either tucatinib or placebo. A distinctive feature of this study was the inclusion of patients with new or active brain metastases (BMs) at study entry, a population traditionally excluded from clinical trials. Thus, HER2CLIMB provides the first solid evidence of an OS benefit in patients with BC and BMs, addressing a long standing unmet medical need, especially given the high incidence of central nervous system metastatic spread in patients with HER2-positive disease. This review provides an overview of the molecular and clinical landscape of tucatinib for the treatment of advanced BC. It focuses on the technological journey that drove the development of this therapeutic innovation, from preclinical data to clinical practice

    Time course of risk factors associated with mortality of 1260 critically ill patients with COVID-19 admitted to 24 Italian intensive care units

    Get PDF
    Purpose: To evaluate the daily values and trends over time of relevant clinical, ventilatory and laboratory parameters during the intensive care unit (ICU) stay and their association with outcome in critically ill patients with coronavirus disease 19 (COVID-19). Methods: In this retrospective–prospective multicentric study, we enrolled COVID-19 patients admitted to Italian ICUs from February 22 to May 31, 2020. Clinical data were daily recorded. The time course of 18 clinical parameters was evaluated by a polynomial maximum likelihood multilevel linear regression model, while a full joint modeling was fit to study the association with ICU outcome. Results: 1260 consecutive critically ill patients with COVID-19 admitted in 24 ICUs were enrolled. 78% were male with a median age of 63 [55–69] years. At ICU admission, the median ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) was 122 [89–175] mmHg. 79% of patients underwent invasive mechanical ventilation. The overall mortality was 34%. Both the daily values and trends of respiratory system compliance, PaO2/FiO2, driving pressure, arterial carbon dioxide partial pressure, creatinine, C-reactive protein, ferritin, neutrophil, neutrophil–lymphocyte ratio, and platelets were associated with survival, while for lactate, pH, bilirubin, lymphocyte, and urea only the daily values were associated with survival. The trends of PaO2/FiO2, respiratory system compliance, driving pressure, creatinine, ferritin, and C-reactive protein showed a higher association with survival compared to the daily values. Conclusion: Daily values or trends over time of parameters associated with acute organ dysfunction, acid–base derangement, coagulation impairment, or systemic inflammation were associated with patient survival

    Interfacial Bonding between a Crystalline Metal-Organic Framework and an Inorganic Glass.

    Get PDF
    The interface within a composite is critically important for the chemical and physical properties of these materials. However, experimental structural studies of the interfacial regions within metal-organic framework (MOF) composites are extremely challenging. Here, we provide the first example of a new MOF composite family, i.e., using an inorganic glass matrix host in place of the commonly used organic polymers. Crucially, we also decipher atom-atom interactions at the interface. In particular, we dispersed a zeolitic imidazolate framework (ZIF-8) within a phosphate glass matrix and identified interactions at the interface using several different analysis methods of pair distribution function and multinuclear multidimensional magic angle spinning nuclear magnetic resonance spectroscopy. These demonstrated glass-ZIF atom-atom correlations. Additionally, carbon dioxide uptake and stability tests were also performed to check the increment of the surface area and the stability and durability of the material in different media. This opens up possibilities for creating new composites that include the intrinsic chemical properties of the constituent MOFs and inorganic glasses

    Colorectal Cancer Stem Cells Are Enriched in Xenogeneic Tumors Following Chemotherapy

    Get PDF
    Patients generally die of cancer after the failure of current therapies to eliminate residual disease. A subpopulation of tumor cells, termed cancer stem cells (CSC), appears uniquely able to fuel the growth of phenotypically and histologically diverse tumors. It has been proposed, therefore, that failure to effectively treat cancer may in part be due to preferential resistance of these CSC to chemotherapeutic agents. The subpopulation of human colorectal tumor cells with an ESA(+)CD44(+) phenotype are uniquely responsible for tumorigenesis and have the capacity to generate heterogeneous tumors in a xenograft setting (i.e. CoCSC). We hypothesized that if non-tumorigenic cells are more susceptible to chemotherapeutic agents, then residual tumors might be expected to contain a higher frequency of CoCSC.Xenogeneic tumors initiated with CoCSC were allowed to reach approximately 400 mm(3), at which point mice were randomized and chemotherapeutic regimens involving cyclophosphamide or Irinotecan were initiated. Data from individual tumor phenotypic analysis and serial transplants performed in limiting dilution show that residual tumors are enriched for cells with the CoCSC phenotype and have increased tumorigenic cell frequency. Moreover, the inherent ability of residual CoCSC to generate tumors appears preserved. Aldehyde dehydrogenase 1 gene expression and enzymatic activity are elevated in CoCSC and using an in vitro culture system that maintains CoCSC as demonstrated by serial transplants and lentiviral marking of single cell-derived clones, we further show that ALDH1 enzymatic activity is a major mediator of resistance to cyclophosphamide: a classical chemotherapeutic agent.CoCSC are enriched in colon tumors following chemotherapy and remain capable of rapidly regenerating tumors from which they originated. By focusing on the biology of CoCSC, major resistance mechanisms to specific chemotherapeutic agents can be attributed to specific genes, thereby suggesting avenues for improving cancer therapy
    • 

    corecore