2,352 research outputs found
Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications
The conceptual design and operational principle of a novel high-efficiency,
fast neutron imaging detector based on THGEM, intended for future fan-beam
transmission tomography applications, is described. We report on a feasibility
study based on theoretical modeling and computer simulations of a possible
detector configuration prototype. In particular we discuss results regarding
the optimization of detector geometry, estimation of its general performance,
and expected imaging quality: it has been estimated that detection efficiency
of around 5-8% can be achieved for 2.5MeV neutrons; spatial resolution is
around one millimeter with no substantial degradation due to scattering
effects. The foreseen applications of the imaging system are neutron tomography
in non-destructive testing for the nuclear energy industry, including
examination of spent nuclear fuel bundles, detection of explosives or drugs, as
well as investigation of thermal hydraulics phenomena (e.g., two-phase flow,
heat transfer, phase change, coolant dynamics, and liquid metal flow).Comment: 11 Pages; 6 Figures; Proceeding of the International Workshop on Fast
Neutron Detectors and Application FNDA2011, Ein Gedi, Israel, November 2011.
Published on the Journal of Instrumentation; 2012 JINST 7 C0205
A comparison between elite swimmers and kayakers on upper body push and pull strength and power performance
The aim of the present study was to compare the load-power curve expressed at bench press (PR) and prone bench pull (PU) between elite swimmers and kayakers. Another aim was to calculate the strength and power PR/PU ratio in the same populations. Fifteen elite swimmers (SW: age = 23.8 ± 2.9 y; body mass = 82.8 ± 5.6 kg; body height = 184.1 ± 4.6 cm) and 13 elite kayakers (KA: age = 23.8 ± 2.9 y; body mass = 91.0 ± 3.5 kg; body height = 180.1 ± 5.4 cm) were assessed for PR 1RM and PU 1RM. They were then assessed for power produced at 40, 60 and 80% of 1RM in both PR and PU. The area under the load-power curve (AUC) and PR/PU ratios were calculated for both the SW and KA groups. The KA group showed significantly higher PR1RM (+18.2%; p = 0.002) and PU1RM (+25.7%; p < 0.001) compared to the SW group. Significant group differences were also detected for PUAUC (p < 0.001) and for the PR/PU power ratio (p < 0.001). No significant group differences were detected for PRAUC (p = 0.605) and for the PR/PU strength ratio (p = 0.065; 0.87 and 0.82 in SW and KA, respectively). The present findings indicate that elite KA were stronger and more powerful than elite SW in the upper body. Not consistently with other athletic populations, both KA and SW athletes were stronger and more powerful in upper body pull compared to push moves
A Quantile-Based Watermarking Approach for Distortion Minimization
Distortion-based watermarking techniques embed the watermark by performing tolerable changes in the digital assets being protected. For relational data, mark insertion can be performed over the different data types of the database relations’ attributes. An important goal for distortion-based approaches is to minimize as much as possible the changes that the watermark embedding provokes into data, preserving their usability, watermark robustness, and capacity. This paper proposes a quantile-based watermarking technique for numerical cover type focused on preserving the distribution of attributes used as mark carriers. The experiments performed to validate our proposal show a significant distortion reduction compared to traditional approaches while maintaining watermark capacity levels. Also, positive achievements regarding robustness are visible, evidencing our technique’s resilience against subset attacks
Advances in imaging THGEM-based detectors
The thick GEM (THGEM) [1] is an "expanded" GEM, economically produced in the
PCB industry by simple drilling and etching in G-10 or other insulating
materials (fig. 1). Similar to GEM, its operation is based on electron gas
avalanche multiplication in sub-mm holes, resulting in very high gain and fast
signals. Due to its large hole size, the THGEM is particularly efficient in
transporting the electrons into and from the holes, leading to efficient
single-electron detection and effective cascaded operation. The THGEM provides
true pixilated radiation localization, ns signals, high gain and high rate
capability. For a comprehensive summary of the THGEM properties, the reader is
referred to [2, 3]. In this article we present a summary of our recent study on
THGEM-based imaging, carried out with a 10x10 cm^2 double-THGEM detector.Comment: 3 pages, 3 figures. Presented at the 10th Pisa Meeting on Advanced
Detectors; ELBA-Italy; May 21-27 200
Abstracting strings for model checking of C programs
Data type abstraction plays a crucial role in software verification. In this paper, we introduce a domain for abstracting strings in the C programming language, where strings are managed as null-terminated arrays of characters. The new domain M-String is parametrized on an index (bound) domain and a character domain. By means of these different constituent domains, M-Strings captures shape information on the array structure as well as value information on the characters occurring in the string. By tuning these two parameters, M-String can be easily tailored for specific verification tasks, balancing precision against complexity. The concrete and the abstract semantics of basic operations on strings are carefully formalized, and soundness proofs are fully detailed. Moreover, for a selection of functions contained in the standard C library, we provide the semantics for character access and update, enabling an automatic lifting of arbitrary string-manipulating code into our new domain. An implementation of abstract operations is provided within a tool that automatically lifts existing programs into the M-String domain along with an explicit-state model checker. The accuracy of the proposed domain is experimentally evaluated on real-case test programs, showing that M-String can efficiently detect real-world bugs as well as to prove that program does not contain them after they are fixed
THGEM operation in Ne and Ne/CH4
The operation of Thick Gaseous Electron Multipliers (THGEM) in Ne and Ne/CH4
mixtures, features high multiplication factors at relatively low operation
potentials, in both single- and double-THGEM configurations. We present some
systematic data measured with UV-photons and soft x-rays, in various Ne
mixtures. It includes gain dependence on hole diameter and gas purity,
photoelectron extraction efficiency from CsI photocathodes into the gas,
long-term gain stability and pulse rise-time. Position resolution of a 100x100
mm^2 X-rays imaging detector is presented. Possible applications are discussed.Comment: Submitted to JINST, 25 pages, 33 figure
Identification via numerical computation of transcriptional determinants of a cell phenotype decision making
Complex cellular processes, such as phenotype decision making, are exceedingly difficult to analyze experimentally, due to the multiple-layer regulation of gene expression and the intercellular variability referred to as biological noise. Moreover, the heterogeneous experimental approaches used to investigate distinct macromolecular species, and their intrinsic differential time-scale dynamics, add further intricacy to the general picture of the physiological phenomenon. In this respect, a computational representation of the cellular functions of interest can be used to extract relevant information, being able to highlight meaningful active markers within the plethora of actors forming an active molecular network. The multiscale power of such an approach can also provide meaningful descriptions for both population and single-cell level events. To validate this paradigm a Boolean and a Markov model were combined to identify, in an objective and user-independent manner, a signature of genes recapitulating epithelial to mesenchymal transition in-vitro. The predictions of the model are in agreement with experimental data and revealed how the expression of specific molecular markers is related to distinct cell behaviors. The presented method strengthens the evidence of a role for computational representation of active molecular networks to gain insight into cellular physiology and as a general approach for integrating in-silico/in-vitro study of complex cell population dynamics to identify their most relevant drivers
- …