569 research outputs found

    Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS): genetic and clinical aspects

    Get PDF
    Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) typically presents in middle life with a combination of neuropathy, ataxia and vestibular disease, with patients reporting progressive imbalance, oscillopsia, sensory disturbance and a dry cough. Examination identifies a sensory neuropathy or neuronopathy and bilaterally impaired vestibulo-ocular reflex. The underlying genetic basis is of biallelic AAGGG expansions in the second intron of replication factor complex subunit 1 (RFC1). The frequency and phenotype spectrum of RFC1 disease is expanding, ranging from typical CANVAS to site-restricted variants affecting the sensory nerves, cerebellum and/or the vestibular system. Given the wide phenotype spectrum of RFC1, the differential diagnosis is broad. RFC1 disease due to biallelic AAGGG expansions is probably the most common cause of recessive ataxia. The key to suspecting the disease (and prompt genetic testing) is a thorough clinical examination assessing the three affected systems and noting the presence of chronic cough

    A cost effectiveness and capacity analysis for the introduction of universal rotavirus vaccination in Kenya : comparison between Rotarix and RotaTeq vaccines

    Get PDF
    Background Diarrhoea is an important cause of death in the developing world, and rotavirus is the single most important cause of diarrhoea associated mortality. Two vaccines (Rotarix and RotaTeq) are available to prevent rotavirus disease. This analysis was undertaken to aid the decision in Kenya as to which vaccine to choose when introducing rotavirus vaccination. Methods Cost-effectiveness modelling, using national and sentinel surveillance data, and an impact assessment on the cold chain. Results The median estimated incidence of rotavirus disease in Kenya was 3015 outpatient visits, 279 hospitalisations and 65 deaths per 100,000 children under five years of age per year. Cumulated over the first five years of life vaccination was predicted to prevent 34% of the outpatient visits, 31% of the hospitalizations and 42% of the deaths. The estimated prevented costs accumulated over five years totalled US1,782,761(directandindirectcosts)withanassociated48,585DALYs.FromasocietalperspectiveRotarixhadacosteffectivenessratioofUS1,782,761 (direct and indirect costs) with an associated 48,585 DALYs. From a societal perspective Rotarix had a cost-effectiveness ratio of US142 per DALY (US5forthefullcourseoftwodoses)andRotaTeqUS5 for the full course of two doses) and RotaTeq US288 per DALY ($10.5 for the full course of three doses). RotaTeq will have a bigger impact on the cold chain compared to Rotarix. Conclusion Vaccination against rotavirus disease is cost-effective for Kenya irrespective of the vaccine. Of the two vaccines Rotarix was the preferred choice due to a better cost-effectiveness ratio, the presence of a vaccine vial monitor, the requirement of fewer doses and less storage space, and proven thermo-stability

    IGHMBP2 mutation associated with organ-specific autonomic dysfunction

    Get PDF
    Biallelic mutations in the IGHMBP2 have been associated with two distinct phenotypes: spinal muscular atrophy with respiratory distress type 1 (SMARD1) and CMT2S. We describe a patient who developed progressive muscle weakness and wasting in her upper and lower limbs from infancy. She developed respiratory involvement at age 9, eventually requiring 24-h non-invasive ventilation, and severe autonomic dysfunction restricted to the gastrointestinal tract. Neurophysiological studies at age 27 years revealed absent sensory and motor responses and severe chronic denervation changes in proximal muscles of the upper limbs. Targeted multigene panel sequencing detected a novel homozygous missense variant in the IGHMBP2 gene (c.1325A > G; p.Tyr442Cys). This variant was validated by Sanger sequencing and co-segregation analysis confirmed that both parents were asymptomatic heterozygous carriers. This case report confirms that IGHMBP2 related disorders can result in a severe peripheral neuropathy with gastrointestinal autonomic dysfunction requiring parenteral nutrition

    Autosomal dominant optic atrophy and cataract “plus” phenotype including axonal neuropathy

    Get PDF
    Objective To characterize the phenotype in individuals with OPA3-related autosomal dominant optic atrophy and cataract (ADOAC) and peripheral neuropathy (PN). Methods Two probands with multiple affected relatives and one sporadic case were referred for evaluation of a PN. Their phenotype was determined by clinical ± neurophysiological assessment. Neuropathologic examination of sural nerve and skeletal muscle, and ultrastructural analysis of mitochondria in fibroblasts were performed in one case. Exome sequencing was performed in the probands. Results The main clinical features in one family (n = 7 affected individuals) and one sporadic case were early-onset cataracts (n = 7), symptoms of gastrointestinal dysmotility (n = 8), and possible/confirmed PN (n = 7). Impaired vision was an early-onset feature in another family (n = 4 affected individuals), in which 3 members had symptoms of gastrointestinal dysmotility and 2 developed PN and cataracts. The less common features among all individuals included symptoms/signs of autonomic dysfunction (n = 3), hearing loss (n = 3), and recurrent pancreatitis (n = 1). In 5 individuals, the neuropathy was axonal and clinically asymptomatic (n = 1), sensory-predominant (n = 2), or motor and sensory (n = 2). In one patient, nerve biopsy revealed a loss of large and small myelinated fibers. In fibroblasts, mitochondria were frequently enlarged with slightly fragmented cristae. The exome sequencing identified OPA3 variants in all probands: a novel variant (c.23T>C) and the known mutation (c.313C>G) in OPA3. Conclusions A syndromic form of ADOAC (ADOAC+), in which axonal neuropathy may be a major feature, is described. OPA3 mutations should be included in the differential diagnosis of complex inherited PN, even in the absence of clinically apparent optic atrophy

    A novel RFC1 repeat motif (ACAGG) in two Asia-Pacific CANVAS families

    Get PDF
    Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is a progressive late-onset, neurological disease. Recently, a pentanucleotide expansion in intron 2 of RFC1 was identified as the genetic cause of CANVAS. We screened an Asian-Pacific cohort for CANVAS and identified a novel RFC1 repeat expansion motif, (ACAGG)exp, in three affected individuals. This motif was associated with additional clinical features including fasciculations and elevated serum creatine kinase. These features have not previously been described in individuals with genetically-confirmed CANVAS. Haplotype analysis showed our patients shared the same core haplotype as previously published, supporting the possibility of a single origin of the RFC1 disease allele. We analysed data from >26 000 genetically diverse individuals in gnomAD to show enrichment of (ACAGG) in non-European populations

    Genetic and phenotypic characterisation of inherited myopathies in a tertiary neuromuscular centre

    Get PDF
    Diagnosis of inherited myopathies can be a challenging and lengthy process due to broad genetic and phenotypic heterogeneity. In this study we applied focused exome sequencing to investigate a cohort of 100 complex adult myopathy cases who remained undiagnosed despite extensive investigation. We evaluated the frequency of genetic diagnoses, clinical and pathological factors most likely to be associated with a positive diagnosis, clinical pitfalls and new phenotypic insights that could help to guide future clinical practice. We identified pathogenic/likely pathogenic variants in 32/100 cases. TTN-related myopathy was the most common diagnosis (4/32 cases) but the majority of positive diagnoses related to a single gene each. Childhood onset of symptoms was more likely to be associated with a positive diagnosis. Atypical and new clinico-pathological phenotypes with diagnostic pitfalls were identified. These include the new emerging group of neuromyopathy genes (HSPB1, BICD2) and atypical biopsy findings: COL6A-related myopathy with mitochondrial features, DOK7 presenting as myopathy with minicores and DES-related myopathy without myofibrillar pathology. Our data demonstrates the diagnostic efficacy of broad NGS screening when combined with detailed clinico-pathological phenotyping in a complex neuromuscular cohort. Atypical clinico-pathological features may delay the diagnostic process if smaller targeted gene panels are used

    A CADM3 variant causes Charcot-Marie-Tooth disease with marked upper limb involvement

    Get PDF
    The CADM family of proteins consists of four neuronal specific adhesion molecules (CADM1, CADM2, CADM3 and CADM4) that mediate the direct contact and interaction between axons and glia. In the peripheral nerve, axon-Schwann cell interaction is essential for the structural organization of myelinated fibres and is primarily mediated by the binding of CADM3, expressed in axons, to CADM4, expressed by myelinating Schwann cells. We have identified—by whole exome sequencing—three unrelated families, including one de novo patient, with axonal Charcot-Marie-Tooth disease (CMT2) sharing the same private variant in CADM3, Tyr172Cys. This variant is absent in 230 000 control chromosomes from gnomAD and predicted to be pathogenic. Most CADM3 patients share a similar phenotype consisting of autosomal dominant CMT2 with marked upper limb involvement. High resolution mass spectrometry analysis detected a newly created disulphide bond in the mutant CADM3 potentially modifying the native protein conformation. Our data support a retention of the mutant protein in the endoplasmic reticulum and reduced cell surface expression in vitro. Stochastic optical reconstruction microscopy imaging revealed decreased co-localization of the mutant with CADM4 at intercellular contact sites. Mice carrying the corresponding human mutation (Cadm3Y170C) showed reduced expression of the mutant protein in axons. Cadm3Y170C mice showed normal nerve conduction and myelin morphology, but exhibited abnormal axonal organization, including abnormal distribution of Kv1.2 channels and Caspr along myelinated axons. Our findings indicate the involvement of abnormal axon-glia interaction as a disease-causing mechanism in CMT patients with CADM3 mutations. A correction has been published: Brain, Volume 144, Issue 7, July 2021, Page e64, https://doi.org/10.1093/brain/awab18
    corecore