
 

Horga, A, Bugiardini, E, Manole, A, Bremner, F, Jaunmuktane, Z, Dankwa, L, 
Rebelo, AP, Woodward, CE, Hargreaves, IP, Cortese, A, Pittman, AM, Brandner, 
S, Polke, JM, Pitceathly, RDS, Züchner, S, Hanna, MG, Scherer, SS, Houlden, H 
and Reilly, MM

 Autosomal dominant optic atrophy and cataract “plus” phenotype including 
axonal neuropathy

http://researchonline.ljmu.ac.uk/id/eprint/11033/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. 
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Horga, A, Bugiardini, E, Manole, A, Bremner, F, Jaunmuktane, Z, Dankwa, L, 
Rebelo, AP, Woodward, CE, Hargreaves, IP, Cortese, A, Pittman, AM, 
Brandner, S, Polke, JM, Pitceathly, RDS, Züchner, S, Hanna, MG, Scherer, 
SS, Houlden, H and Reilly, MM (2019) Autosomal dominant optic atrophy 

LJMU Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/288350176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


http://researchonline.ljmu.ac.uk/



ARTICLE OPEN ACCESS

Autosomal dominant optic atrophy and cataract
“plus” phenotype including axonal neuropathy
Alejandro Horga, MD, Enrico Bugiardini, MD,* Andreea Manole, PhD,* Fion Bremner, FRCOphth, PhD,

Zane Jaunmuktane, MD, FRCPath, Lois Dankwa, MS, Adriana P. Rebelo, PhD, Catherine E. Woodward, BSc,

Iain P. Hargreaves, PhD, Andrea Cortese, MD, Alan M. Pittman, PhD, Sebastian Brandner, MD, FRCPath,

James M. Polke, PhD, Robert D.S. Pitceathly, MRCP, PhD, Stephan Züchner, MD, PhD,
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Abstract
Objective
To characterize the phenotype in individuals with OPA3-related autosomal dominant optic
atrophy and cataract (ADOAC) and peripheral neuropathy (PN).

Methods
Two probands with multiple affected relatives and one sporadic case were referred for evaluation of
a PN. Their phenotype was determined by clinical ± neurophysiological assessment. Neuropath-
ologic examination of sural nerve and skeletal muscle, and ultrastructural analysis of mitochondria in
fibroblasts were performed in one case. Exome sequencing was performed in the probands.

Results
The main clinical features in one family (n = 7 affected individuals) and one sporadic case were
early-onset cataracts (n = 7), symptoms of gastrointestinal dysmotility (n = 8), and possible/
confirmed PN (n = 7). Impaired vision was an early-onset feature in another family (n = 4
affected individuals), in which 3 members had symptoms of gastrointestinal dysmotility and 2
developed PN and cataracts. The less common features among all individuals included
symptoms/signs of autonomic dysfunction (n = 3), hearing loss (n = 3), and recurrent pan-
creatitis (n = 1). In 5 individuals, the neuropathy was axonal and clinically asymptomatic (n =
1), sensory-predominant (n = 2), or motor and sensory (n = 2). In one patient, nerve biopsy
revealed a loss of large and small myelinated fibers. In fibroblasts, mitochondria were frequently
enlarged with slightly fragmented cristae. The exome sequencing identifiedOPA3 variants in all
probands: a novel variant (c.23T>C) and the known mutation (c.313C>G) in OPA3.

Conclusions
A syndromic form of ADOAC (ADOAC+), in which axonal neuropathy may be a major
feature, is described. OPA3 mutations should be included in the differential diagnosis of
complex inherited PN, even in the absence of clinically apparent optic atrophy.
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Mutations in OPA3 (figure 1), encoding a mitochondrial
protein likely involved in the regulation of mitochondrial
fission,1–5 are associated with 2 distinct disorders that share
the common feature of bilateral optic atrophy (OA; table e-1,
links.lww.com/NXG/A146). Recessive, loss-of-function
mutations cause 3-methylglutaconic aciduria type III
(MGA3 [MIM 258501]), also known as Costeff syndrome,
a rare disorder that is clinically characterized by OA and ex-
trapyramidal dysfunction with onset in the first decade of life,
subsequent development of spastic paraparesis and cerebellar
signs, and increased urinary excretion of 3-methylglutaconic
and 3-methylglutaric acids.6–13 Dominant mutations, in con-
trast, lead to OA that typically presents within the first 2
decades of life and is often associated with cataracts with
variable age at onset (autosomal dominant OA and cataract;

ADOAC [MIM 165300]).14–18 Additional features such as
hearing loss, cerebellar and extrapyramidal signs, and dysau-
tonomic or gastrointestinal symptoms have been reported less
consistently in patients with ADOAC (table e-2). Symptoms
or signs suggestive of peripheral neuropathy (PN) have been
described to date in 4 individuals with dominant OPA3
mutations,14,15,18 although it was confirmed by nerve con-
duction studies (NCSs) in only one of them.18

Here, we describe 2 families and one sporadic case with
a syndromic form of ADOAC in which PN was a major
clinical feature. This report broadens the clinical and genetic
spectrum of ADOAC and indicates that OPA3 should be
included in the differential diagnosis of the complex inherited
PN19 even in the absence of clinically apparent OA.

Figure 1 Schematic of the OPA3 gene and OPA3 protein isoform b

The OPA3 gene (NCBI RefSeq NG_013332.1; top figure), located in chromosome 19q13.32, contains 3 exons (1, 2, and 3; boxes containing exon numbers) and
spans 57.4 kb. The coding regions of exons 2 and 3 and their exon-intron boundaries are highly similar and may have originated by segmental duplication.3

OPA3 exons are alternatively spliced to generate 2mRNA transcripts: transcript variant 2 (exon 1 plus exon 2 [NM_025136.3]) and transcript variant 1 (exon 1
plus exon 3 [NM_001017989.2]). Transcript variant 2 seems tobe the predominant transcript inmost tissues and encodes a 179 amino acid (AA) protein (OPA3
isoform b [NP_079412.1]; bottom figure). Transcript variant 1 encodes a 180 AA protein (OPA3 isoform a [NP_001017989]; not shown). OPA3 isoform b amino
acids 1–48 are encoded by exon 1 (dark green) and amino acids 48–179 are encoded by exon 2 (light green). Its N-terminal region contains a putative
mitochondrial targeting sequence in AAs 1–18 (as predicted by in silico analysis with MitoProt and TargetP) or 1–30 (as indicated by functional studies with
deletion mutants). In silico analysis with MitoFates predicts a mitochondrial processing peptidase cleavage site (red arrow) and 2 TOM20 recognition motifs
(AAs 8–12 and 48–52; red boxes). An additional mitochondrial sorting/cleavage signal at position 25–29 (purple box) has been proposed by some authors.3,8

The localizations of reported dominant and recessive mutations are shown in the figure (one-letter AA abbreviations are used for simplicity; blue boxes
indicate mutations reported in the present study). p.Leu11Gln (p.L11Q) was homozygous in 2 siblings with optic atrophy, extrapyramidal signs including
dystonia, and pyramidal signs or ataxia, and it was heterozygous in theirmotherwith later-onset dystonia.30 Nopathogenicmutations have beendescribed in
AAs 48-180 of OPA3 isoform a encoded by exon 3 (not shown).

Glossary
AA = amino acid; ADOAC = autosomal dominant optic atrophy and cataracts;DOA = dominant optic atrophy; EM = electron
microscope; ETC = electron transport chain; MGA3 = 3-methylglutaconic aciduria type III (Costeff syndrome); MTS =
mitochondrial targeting sequence;NCS = nerve conduction study;OA = optic atrophy;OPA3 =Optic atrophy 3 protein; PN =
peripheral neuropathy.
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Methods
Patients
The 3 probands were identified at the outpatient clinics of the
National Hospital for Neurology and Neurosurgery, London,
UK, and the Charcot-Marie-Tooth disease (CMT) Center of
Excellence at the University of Pennsylvania, Philadelphia,
PA. These probands were recruited into local research pro-
tocols to determine the genetic etiology in patients with
inherited neuropathies using next-generation sequencing.
Diagnostic laboratory tests, neurophysiological studies, MRI
scans, and tissue biopsies were performed and analyzed using
standard protocols.

Sequencing
DNA samples were extracted from peripheral blood leuko-
cytes and skeletal muscle biopsy specimens using commercial
kits. Exome sequencing was performed after target capture
using the Illumina TruSeq Exome, Agilent SureSelect Focused
Exome, or Agilent SureSelect Human All Exon kit. The Illumina
HiSeq2000 or HiSeq2500 instruments were used to produce 100
bp paired-end sequence reads. The following software tools were
used to align sequence reads to the human genome assembly
19 (GRCh37) and to call and annotate variants: Novocraft
NovoAlign, Burrows-Wheeler Aligner, Picard, Genome Analysis
Toolkit, SAMtools, and ANNOVAR.20 After filtering, candidate
variants were evaluated in silico to predict their effects, and vali-
dation and cosegregation analysis of OPA3 variants in families A,
B, and C were performed by Sanger sequencing (see supple-
mentary material for details, links.lww.com/NXG/A146).

Mitochondrial DNA (mtDNA) was assessed for large-scale
rearrangements using long-range PCR and Southern blot of
total genomic DNA extracted from skeletal muscle. The entire
mtDNA sequence was analyzed with Affymetrix GeneChip
Human Mitochondrial Resequencing Array 2.0 as described
elsewhere.21

Cell imaging
Fibroblast cell lines were established from skin biopsies of
proband AII-2 and a healthy age- and sex-matched control

using standard methods. Cells were grown in high glucose
Dulbecco’s modified Eagle’s medium, supplemented with
10% fetal bovine serum, penicillin/streptomycin, and 0.05
mg/mL uridine. For electron microscopy (EM), fibroblasts
were fixed in 3% glutaraldehyde in 0.1 M sodium cacodylate
buffer and 5 mM CaCl2 overnight, then treated with 1% os-
mium tetroxide for 3 hours at 4°C and embedded in Araldite
CY-212 resin. Ultrathin sections (70 μm) were stained with
lead citrate and uranyl acetate. Images were taken on a Philips
CM10 transmission electron microscope fitted with a Mega-
View G3 camera and RADIUS Software (Olympus). Mito-
chondria morphology in fibroblasts was measured blind to
disease status.

Standard protocol approvals, registrations,
and patient consents
Research protocols were approved by local institutional re-
view board and/or ethics committee. Patients gave written
informed consent to participate.

Data availability
Anonymized data not published within this article will be
made available by request from any qualified investigator.

Results
Families and overall phenotype
Three unrelated probands were referred to our PN clinics for
evaluation. Probands AII-2 and BIII-2 had affected relatives of
3 generations based on history (AI-1, AII-1, AIII-2, AIII-3,
AIII-4, BI-1, and BII-3) or examination (AIII-1 and BII-1),
while proband CII-1 was a sporadic case (figure 2). The
clinical information of all affected individuals is summarized in
table 1, and their clinical description is provided in the sup-
plementary material (links.lww.com/NXG/A146).

Family A
The phenotype in the affected members of family A (n = 7)
was mostly characterized by early-onset cataracts, gastroin-
testinal dysmotility symptoms, and PN (based on symptoms/
signs or neurophysiological studies), although the data on

Figure 2 Pedigrees of families and segregation analysis of variants c.23T>C (p.Met8Thr) and c.313C>G (p.Gln105Glu) in
OPA3 (NM_025136.3)

OPA3 variants found in each family and
the genotype of tested individuals are
indicated in red. Arrow = probands.
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these features were incomplete for 3 individuals. Reduced
visual acuity was first detected in proband AII-2 during the
evaluation of her PN at age 49, and OA was subsequently
confirmed (figure 3, A and B). A reduced visual acuity was
also observed in AIII-1, but we had no confirmation of an
underlying OA. Impaired vision was not reported for other
relatives. Intrafamilial phenotypic variability was evident,
with patient AIII-1 having more severe symptoms than his
siblings, and an earlier and more severe presentation than
AII-2.

Family B
Early-onset, bilateral visual impairment leading to severely
reduced visual acuities by the age of 30–40 was the initial
clinical feature in all affected members of family B (n = 4;
originally reported in 199622). Three of them had a diagnosis
of OA and reported symptoms of gastrointestinal dysmotility.
PN and cataracts were detected in proband BIII-2 and her
father BII-1 on follow-up examinations in their adulthood.

Family C
Proband CII-1 was the only affected individual in this family.
Her phenotype was similar to that of family A: early-onset
cataracts, gastrointestinal dysmotility symptoms, and PN. In
addition, she had recurrent episodes of pancreatitis from age
11. Bilateral OA was detected by reverse phenotyping: after
a genetic diagnosis of her PN was achieved, by optical co-
herence tomography.

Peripheral neuropathy
Nine of the 12 affected individuals from the 3 families had
a possible or confirmed PN. It was considered possible in 4
individuals (AI-4, AIII-2, AIII-3, and AIII-4) based on the
history provided by relatives. In 5 patients (AII-2, AIII-1, BII-
1, BIII-2, and CII-1), we confirmed the diagnosis based on
clinical and neurophysiological assessment (see supplemen-
tary material for an extended description, links.lww.com/
NXG/A146). Detailed results of NCS/EMGwere available in
4 cases (table e-3).

Table 1 Summary of clinical features in affected individuals from families A, B, and C

Individual
Bilateral
cataracts

Bilateral
optic
atrophy

Gastrointestinal
dysmotility
symptoms

Peripheral
neuropathy
symptoms/signs

PN on
NCS/
EMG

Hearing
loss Other features

AI-1 +
<5 y

n/a + ± n/a +
50s

AII-1 +
<5 y

n/a +
40s

± n/a n/a

AII-2 +
<5 y

+
on examination 49 y

+
30s

+
40s

+
axonal S>M

+
50s

Autonomic
features,
mild ptosis

AIII-1 +
<3 y

±a +
10s

+
10s

+
axonal S&M

+ Parenteral
nutrition
from his 20s

AIII-2 n/a n/a ± n/a n/ab n/a

AIII-3 +
early-onset

n/a ± n/a + n/a

AIII-4 +
surgery ≥15 y

n/a ± + n/a n/a

BI-1 n/a ±a

10 y
n/a n/a n/a —

BII-1 +
on examination 65 y

+
10 y

± +
on examination 65 y

+
axonal S>M

—

BII-3 n/a +
7 y

± n/a n/a —

BIII-2 +
surgery 44 y

+
5 y

+
5 y

+
20s

+
axonal S>M

+
50s

Orthostatic
hypotension

CII-1 +
surgery 14 y

+
on examination 32 y

+
10s

+
≤16 y

+
axonal S&M

— Recurrent
pancreatitis,
hypertension,
PRES

Abbreviations: n/a = not available or unknown; M = motor; NCS/EMG = nerve conduction studies/electromyography; PN = peripheral neuropathy; PRES =
posterior reversible encephalopathy syndrome; S = sensory; ± mild or possible symptoms reported by relatives.
The age at onset of symptoms is indicated below the clinical features when available.
a Bilateral visual loss but no confirmed diagnosis of optic atrophy.
b Abnormal neurophysiological studies.
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Asymptomatic neuropathy
In patient BII-1, the PN was asymptomatic and detected on
examination at age 65. NCS were consistent with an axonal
motor and sensory neuropathy.

Sensory-predominant neuropathy
Probands AII-2 and BIII-2 had a slowly progressive, pre-
dominantly sensory neuropathy. AII-2 developed sensory
symptoms in her feet in her late 40s and was referred to us for
the evaluation of suspected PN at age 49. BIII-2 developed
sensory symptoms in her feet in his 20s; her PN was con-
firmed in her early 30s, but she was referred again to us at age
52 because of symptom worsening. Both patients described
reduced sensation restricted to the lower limbs. On serial
examinations, we observed distal sensory loss in the upper and
lower limbs and signs of mild motor involvement. In both
cases, NCS revealed a length-dependent axonal sensory
neuropathy. NCS/EMG signs of distal motor involvement
were detected only in proband BIII-2.

Motor and sensory neuropathy
Proband CII-1 and patient AIII-1 had a moderate-to-severe
progressive motor and sensory neuropathy with onset in their
childhood or teens. Proband CII-1 had frequent ankle sprains
as a child and was referred to us at age 16 when a PN was
suspected during physical therapy for a foot fracture. Patient

AIII-1 had pes cavus and limb weakness since his teens and
had been diagnosed with inherited neuropathy in his early
20s; he was examined by us at age 31 as part of the family
evaluation. Both patients exhibited motor and sensory deficits
in upper and lower limbs on examination. Proband CII-1 had
4 neurophysiological studies performed between ages 16 and
32, which revealed a severe motor and sensory axonal neu-
ropathy. In patient AIII-3, a previous neurophysiological
study at age 29 confirmed the same diagnosis.

Other clinical features
Symptoms of gastrointestinal dysmotility of variable severity
were reported for most individuals. In the best documented
cases, symptoms included intermittent constipation (AII-2);
episodes of nausea, vomiting, and abdominal pain (CII-1);
gastroparesis and episodes of intestinal pseudo-obstruction
(BIII-2); and intestinal pseudo-obstruction requiring paren-
teral nutrition (AIII-1). Patient BIII-2 required emergency
surgery for intestinal intussusception in her 50s, and patient
AII-1 was also reported to require surgery for her intestinal
motility problems.

All probands had features suggestive of autonomic nervous
system dysfunction, including orthostatic tachycardia (AII-2),
postural hypotension (BIII-2), and episodes of hypertension
in the context of gastrointestinal symptoms that, in one

Figure 3 Bilateral optic atrophy and sural nerve biopsy of patient AII-2

(A) Red-free photographs of the optic discs of patient AII-2 showmild temporal pallor of both optic discs. (B) Optical coherence tomographymeasurements of
the retinal nerve fiber layer thickness around both optic discs of patient AII-2 confirm significant thinning in the temporal quadrants consistent with an optic
neuropathy. (D) Semi-thin resin section of the sural nerve, stained with methylene blue azure-basic fuchsin, shows a fascicle with severe loss of large (red
arrowhead) and small myelinated fibers with no apparent active axonal degeneration andminimal regeneration (scale bar = 25 μm). (E) Electron microscopy
shows frequent denervated Schwann cell profiles and bands of Büngner (blue arrowheads) in keeping with widespread fiber loss. The mitochondria (yellow
arrowheads) show no apparent pathology (scale bar = 1 μm).
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occasion, lead to a posterior reversible encephalopathy syn-
drome (CII-1).

Patient AIII-1 developed hearing loss concurrently to other
symptoms. Proband AII-2 complained of mild hearing loss in
her 50s, and a bilateral auditory neuropathy was confirmed in
her 60s. Patient AI-1 and proband BIII-2 developed hearing
loss in their 50s. The less common clinical features are shown
in table 1.

Neuropathology
Patient AII-2 underwent sural nerve and quadriceps muscle
biopsy at age 57. Nerve biopsy showed a severe loss of my-
elinated fibers that was not selective for large or small fibers,
with no apparent active axonal degeneration and minimal
regeneration, and no evidence of demyelination (figure 3, C
and D). Muscle biopsy revealed occasional angular atrophic
fibers, 2 cytochrome oxidase-negative fibers, and one ragged-
red fiber. The activity of mitochondrial electron transport
chain (ETC) complexes I, II + III, and IV was within control
ranges, and screening for single/multiple deletions and point
mutations of mtDNA in muscle were negative.

EM of mitochondria
Ultrastructural examination of mitochondria with EM was
performed in the cultured fibroblasts from proband AII-2 and
a healthy control. On EM images, we frequently observed
abnormally enlarged mitochondria coupled with slightly frag-
mented mitochondrial cristae and a concomitant reduction in
the area of mitochondrial cristae (figure 4).

Genetic studies
In probands AII-2, BIII-2, and CII-1, analysis of common
genes associated with inherited neuropathy and/or OA yielded
negative results. Exome sequencingwas then performed on these
patients as 3 independent studies. The analysis focused on
nonsynonymous, splice-site, and coding indel variants with mi-
nor allele frequency <0.1% in the Exome Aggregation Consor-
tium data set, located in genes known to cause inherited
neuropathy and/or OA (table e-4, links.lww.com/NXG/A146).

In proband AII-2, we identified the heterozygous missense
variant c.23T>C in exon 1 ofOPA3 (table e-5, links.lww.com/
NXG/A146). Sanger sequencing detected the mutation in the
proband and her affected daughter (AIII-4) but not in the
unaffected son (AIII-5), who was homozygous for the wild-
type allele (figure 2). c.23T>C is a novel variant absent from
public databases and from an in-house control exome database.
It affects an evolutionarily conserved nucleotide and is pre-
dicted to be deleterious by several bioinformatics tools (table
e-6). c.23T>C leads to the substitution of nonpolar, hydro-
phobic methionine for polar threonine at amino acid (AA)
position 8 of OPA3 (p.Met8Thr). This position lies within the
N-terminal mitochondrial targeting sequence (MTS) predicted
by MitoProt and TargetP software tools (AA 1-18) or by
functional studies with deletion mutants (AA 1-30),2 in which
another dominant mutation has been identified (figure 1).16 In
silico analysis with MitoFates suggests that methionine 8 would
be the first of 5 AA of a putative consensus motif recognized by
the mitochondrial import receptor subunit TOM20 (figure 1)
and that p.Met8Thr would eliminate this recognition motif.
The functional significance of hydrophobic AA at position 8 of
OPA3 is supported by multiple sequence alignment of OPA3
homologs, which shows conservation of methionine and iso-
leucine at that position from human to zebra fish (figure e-1).
Based on these data, and the previous association of dominant
OPA3 mutations with OA, cataracts, and PN, we considered
c.23T>C as the most plausible genetic etiology in family A.

In probands BIII-2 and CII-1, we identified the heterozygous
missense mutation c.313C>G (p.Gln105Glu) in exon 2 of
OPA3. The mutation was validated by Sanger sequencing in
both cases. In family B, DNA samples from relatives were not
available for cosegregation analysis. In family C, the mutation
was not found in either parent, confirming that it had occurred
de novo in the proband (figure 2). c.313C>G is not reported
in public databases but is the most frequent mutation reported
in families with dominant OPA3-related OA, sometimes in
association with additional features (tables e-1 and e-2, links.
lww.com/NXG/A146).14,16,17 This variant was therefore
classified as likely pathogenic.

Figure 4 Ultrastructural examination of mitochondria in cultured skin fibroblasts

(A) Representative electronmicrographs showing the ultrastructure ofmitochondria in control and patient AII-2 fibroblasts (scale bar = 1 μm). (B) Patient AII-2
mitochondria (n = 94) display a significant increase in area as compared to control mitochondria (n = 123). (C) Data are presented as box plots illustrating 80%
of the data distribution; 10th, 25th, median, 75th, and 90th percentiles are shown for these box plots. *p < 0.0005 (Mann-Whitney U test).
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Discussion
Here, we describe the members from 3 families in which
a novel missense variant (c.23T>C, p.Met8Thr) and a known
mutation (c.313C>G, p.Gln105Glu) in OPA3 were the most
likely underlying cause of a complex phenotype consisting of
OA, cataracts, gastrointestinal dysmotility, axonal neuropathy,
and possibly autonomic dysfunction and hearing loss. This
observation, together with 2 former reports of similar phe-
notypes associated with the missense substitutions
p.Leu79Val and p.Gln105Glu,15,18 demonstrates that the
dominant OPA3 mutations can cause syndromic forms of
ADOAC (ADOAC “plus”).

We also confirm that an axonal neuropathy may be a major
clinical feature of ADOAC/+. In 4 patients from our series,
the PN was indeed a major cause of disability or was severe
enough to motivate the referral to our centers. In 5 patients
with a well-documented axonal neuropathy, we observed 3
clinical presentations: asymptomatic, sensory-predominant,
and motor and sensory. However, given the differences in the
age of symptoms onset and overall disease severity between
patients, and the later development of motor signs in patients
with sensory-predominant forms, it is possible that the dif-
ferent PN presentations may simply reflect a variable ex-
pressivity of the same pathologic process rather than distinct
PN subtypes. A sensory ganglionopathy seemed unlikely in
patients with sensory-predominant forms, in whom the PN
was length-dependent and symmetrical, with almost normal
joint position sense and no significant limb ataxia.

Despite the limited sample size, our report also suggests
a higher prevalence of PN among patients with ADOAC/+
than previously recognized. Possible reasons for this are that
the PNmay be asymptomatic and/or develop several decades
after the onset of the ophthalmologic problems. Therefore,
long-term follow-up with neurologic evaluations may be
necessary to confirm or exclude a PN in these patients. On the
other hand, data from this and previous studies indicate that
the dominant OPA3 mutations may exhibit considerable
phenotypic variability, so it is also possible that the families or
individuals with the same mutation may or may not develop
additional features such as PN. This point should be clarified
in future studies encompassing larger sample sizes.

Symptoms of gastrointestinal dysmotility were reported
for most affected individuals from the present series, which so
far has only been described in 3 patients with ADOAC/
+.15,16,18 Results from gastrointestinal investigations were not
available for review, and thus, we could not confirm the
underlying pathophysiology. Its coexistence with cardio-
vascular dysautonomic features and/or PN in cases from
the present and previous studies raises the possibility of
a myenteric plexus or extra-intestinal autonomic neuropa-
thy, although we cannot exclude other causes such as an
enteric myopathy. Of note, gastrointestinal dysmotility is
a well-recognized manifestation of certain mitochondrial

disorders, for which both neuropathic and myopathic
mechanisms have been proposed.22

The precise function of the OPA3 protein and the molecular
mechanisms by which heterozygous missense mutations in
OPA3 cause ADOAC/+ are unknown. OPA3 predominantly
localizes to the mitochondria2–4 but its intramitochondrial
topology is still discussed: the mouse homolog of OPA3
copurifies with the inner mitochondrial membrane,1 but the
studies on subcellular fractions of HeLa cells suggest that
OPA3 may be anchored to the mitochondrial outer mem-
brane with the C-terminus exposed to the cytoplasm.2

Overexpression of OPA3 induces mitochondrial fragmenta-
tion, whereas downregulation leads to more elongated and
tubular mitochondria.2,5 These data support that OPA3 is
a mitochondrial membrane protein implicated in the regula-
tion of mitochondrial fission and morphology.

Heterozygous carriers of the recessive OPA3 mutation c.143-
1G>C, which abolishes mRNA expression, are
asymptomatic.8,23 This suggests that dominant missense
mutations have a dominant-negative effect or result in a gain-of-
function rather than haploinsufficiency. Fibroblasts from
ADOAC patients with the p.Val3_Gly4insAlaPro mutation,
located in the N-terminal MTS of OPA3, showed increased
fragmentation of the mitochondrial network,16 which mimics
OPA3 overexpression and gives support to the gain-of-function
hypothesis. Similar findings were observed in HeLa cells
transfected with an OPA3 mutant carrying the p.Gly93Ser
mutation, located in the hydrophobic region of OPA3 (AA 83-
120) that is required for mitochondrial fragmentation.2 How-
ever, no mitochondrial network abnormalities were detected in
fibroblasts from one patient with the same mutation.14 There-
fore, it is possible that dominant mutations affecting different
regions of OPA3 may exert different deleterious effects.

Studies in a zebra fish model of MGA3 indicate that OPA3
does not have a direct role in mitochondrial ETC function,24

and consistent with this, we found the normal activities of
ETC complexes in skeletal muscle from patient AII-2. We did
not detect large-scale mtDNA rearrangements in muscle,
which argues against a role of OPA3 in mtDNA maintenance.
However, EM analysis of mitochondria in fibroblasts from
patient AII-2 revealed frequently enlarged mitochondria with
abnormal cristae. Subtle alterations to the morphology of
mitochondrial cristae have also been identified in the retinal
tissues of a mouse model of MGA3 caused by the homozy-
gous missense mutation p.Leu122Pro.4 Therefore, OPA3
function might be important for the structural integrity of
mitochondrial cristae, and altered mitochondrial cristae ar-
chitecture could be an additional mechanism involved in the
pathogenesis OPA3-related disease.

Based on the findings from the present study, some parallels
can be drawn between OPA3- and OPA1-related diseases.
Mutations affecting OPA1, a dynamin-related guanosine tri-
phosphatase involved in mitochondrial dynamics, represent
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a major cause of dominant OA (DOA), and;20% of patients
may present a DOA “plus” phenotype, including axonal
neuropathy.25 Biallelic mutations inOPA1 can also cause Behr
syndrome,26–28 a severe, early-onset neuro-ophthalmologic
syndrome that is clinically similar to MGA3. Of interest, the
loss of OPA1 causes disruption of mitochondrial cristae
structures.29 Overall, these data may indicate shared patho-
genic mechanisms between OPA3 and OPA1 defects that
warrant further research.
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