58 research outputs found

    The PENELOPE Physics Models and Transport Mechanics. Implementation into Geant4

    Get PDF
    [EN] A translation of the penelope physics subroutines to C++, designed as an extension of the Geant4 toolkit, is presented. The Fortran code system penelope performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials for a wide energy range, nominally from 50 eV up to 1 GeV. Penelope implements the most reliable interaction models that are currently available, limited only by the required generality of the code. In addition, the transport of electrons and positrons is simulated by means of an elaborate class II scheme in which hard interactions (involving deflection angles or energy transfers larger than pre-defined cutoffs) are simulated from the associated restricted differential cross sections. After a brief description of the interaction models adopted for photons and electrons/positrons, we describe the details of the class-II algorithm used for tracking electrons and positrons. The C++ classes are adapted to the specific code structure of Geant4. They provide a complete description of the interactions and transport mechanics of electrons/positrons and photons in arbitrary materials, which can be activated from the G4ProcessManager to produce simulation results equivalent to those from the original penelope programs. The combined code, named PenG4, benefits from the multi-threading capabilities and advanced geometry and statistical tools of Geant4.Financial support from the Spanish Ministerio de Ciencia, Innovacion y Universidades/Agencia Estatal de Investigacion/European Regional Development Fund, European Union, (projects nos. RTI2018-098117-B-C21 and RTI2018-098117-B-C22) is gratefully aknowledged. The work of VA was supported by the program Ayudas para la contratacion de personal investigador en formacion de caracter predoctoral, programa VALi+d under grant number ACIF/2018/148 from the Conselleria dEducacio of the Generalitat Valenciana and the Fondo Social Europeo (FSE). VG acknowledges partial support from FEDER/MCIyU-AEI under grant FPA2017-84543-P, by the Severo Ochoa Excellence Program under grant SEV-2014-0398 and by Generalitat Valenciana through the project PROMETEO/2019/087.Asai, M.; Cortés-Giraldo, MA.; Giménez-Alventosa, V.; Giménez Gómez, V.; Salvat, F. (2021). The PENELOPE Physics Models and Transport Mechanics. Implementation into Geant4. Frontiers in Physics. 9:1-20. https://doi.org/10.3389/fphy.2021.738735S120

    Silicon-based three-dimensional microstructures for radiation dosimetry in hadrontherapy

    Get PDF
    In this work, we propose a solid-state-detector for use in radiation microdosimetry. This device improves the performance of existing dosimeters using customized 3D-cylindrical microstructures etched inside silicon. The microdosimeter consists of an array of micro-sensors that have 3D-cylindrical electrodes of 15 μm diameter and a depth of 5 μm within a silicon membrane, resulting in a well-defined micrometric radiation sensitive volume. These microdetectors have been characterized using an 241Am source to assess their performance as radiation detectors in a high-LET environment. This letter demonstrates the capability of this microdetector to be used to measure dose and LET in hadrontherapy centers for treatment plan verification as part of their patient-specific quality control program

    Integral measurement of the 12C(n, p)12B reaction up to 10 GeV

    Get PDF
    The integral measurement of the 12C(n, p)12B reaction was performed at the neutron time-offlight facility n TOF at CERN. The total number of 12B nuclei produced per neutron pulse of the n TOF beam was determined using the activation technique in combination with a time-of-flight technique. The cross section is integrated over the n TOF neutron energy spectrum from reaction threshold at 13.6 MeV to 10 GeV. Having been measured up to 1 GeV on basis of the 235U(n, f) reaction, the neutron energy spectrum above 200 MeV has been re-evaluated due to the recent extension of the cross section reference for this particular reaction, which is otherwise considered a standard up to 200 MeV. The results from the dedicated GEANT4 simulations have been used to evaluate the neutron flux from 1 GeV up to 10 GeV. The experimental results related to the 12C(n, p)12B reaction are compared with the evaluated cross sections from major libraries and with the predictions of different GEANT4 models, which mostly underestimate the 12B production. On the contrary, a good reproduction of the integral cross section derived from measurements is obtained with TALYS-1.6 calculations, with optimized parameters.European Atomic Energy Communitys (Euratom) Seventh Framework Programme FP7/2007-2011-CHANDA (No. 605203)Narodowe Centrum Nauki (NCN)-UMO-2012/04/M/ST2/00700Croatian Science Foundation-No. 168

    The PENELOPE physics models and transport mechanics. Implementation into Geant4

    Full text link
    A translation of the penelope physics subroutines to C++, designed as an extension of the Geant4 toolkit, is presented. The Fortran code system penelope performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials for a wide energy range, nominally from 50 eV up to 1 GeV. Penelope implements the most reliable interaction models that are currently available, limited only by the required generality of the code. In addition, the transport of electrons and positrons is simulated by means of an elaborate class II scheme in which hard interactions (involving deflection angles or energy transfers larger than pre-defined cutoffs) are simulated from the associated restricted differential cross sections. After a brief description of the interaction models adopted for photons and electrons/positrons, we describe the details of the class-II algorithm used for tracking electrons and positrons. The C++ classes are adapted to the specific code structure of Geant4. They provide a complete description of the interactions and transport mechanics of electrons/positrons and photons in arbitrary materials, which can be activated from the G4ProcessManager to produce simulation results equivalent to those from the original penelope programs. The combined code, named PenG4, benefits from the multi-threading capabilities and advanced geometry and statistical tools of Geant4

    LabVIEW-based control and acquisition system for the dosimetric characterization of a silicon strip detector

    Get PDF
    Theaimofthisworkistopresentanewdataacquisition,control,andanalysissoftwaresystemwrittenin LabVIEW.Thissystemhasbeendesignedtoobtainthedosimetryofasiliconstripdetectorinpolyethylene. It allows the full automation of the experiments and data analysis required for the dosimetric characterization of silicon detectors. It becomes a useful tool that can be applied in the daily routine check of a beam accelerator.MINECO ICTI2013-2016/FPA2013-47327-C2-1-RMINECO ICTI2013-2016/FPA2014-53290-C2-2- PJunta de Andalucía P12-FQM-160

    Experimental setup and procedure for the measurement of the 7Be(n,p)7Li reaction at n_TOF

    Get PDF
    Following the completion of the second neutron beam line and the related experimental area (EAR2) at the n_TOF spallation neutron source at CERN, several experiments were planned and performed. The high instantaneous neutron flux available in EAR2 allows to investigate neutron induced reactions with charged particles in the exit channel even employing targets made out of small amounts of short-lived radioactive isotopes. After the successful measurement of the 7Be(n,) cross section, the 7Be(n,p)7Li reaction was studied in order to provide still missing cross section data of relevance for Big Bang Nucleosynthesis (BBN), in an attempt to find a solution to the cosmological Lithium abundance problem. This paper describes the experimental setup employed in such a measurement and its characterization.Séptimo Programa Marco de la Comunidad Europea de la Energía Atómica (Euratom)-Proyecto CHANDA (No. 605203)Narodowe Centrum Nauki (NCN)-UMO-2012/04/M/ST2/00700-UMO-2016/22/M/ST2/00183Croatian Science Foundation-HRZZ 168

    Novel dual single sided silicon strip detector chip for radiotherapy verification

    Get PDF
    A novel dual single sided silicon strip detector (SSSSD) chip was designed to meet clinical requirements in radiotherapy verification. An available design from Micron Semiconductor Ltd. (BB7, 500 µ m thick) was the base of a two-dimensional detector adapted into a special configuration with the aim of uniforming and minimizing foreing materials around the active area (64 × 64 mm2). With this purpose, two independent BB7 SSSSDs were mounted in a perpendicular configuration, separated by a 500 µ m kapton dielectric film with the same dimensions as the silicon wafers, thus minimizing air gaps in between. This new configuration, called the dual SSSSD chip design, was mounted on kapton printed circuit board (PCB). Both silicon wafers were divided into 32 strips, 2 mm width each. The aim of developing this detector was to allow 2D dose measurements, improve spatial resolution and perform radiotherapy treatment verification faster than with a previous prototype. Characteristics and performance of the novel detector are presented

    Performance of upstream interaction region detectors for the FIRST experiment at GSI

    Get PDF
    The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at GSI has been designed to study carbon fragmentation, measuring 12C double differential cross sections (∂2σ/ ∂θ∂E) for different beam energies between 100 and 1000 MeV/u. The experimental setup integrates newly designed detectors in the, so called, Interaction Region around the graphite target. The Interaction Region upstream detectors are a 250 μm thick scintillator and a drift chamber optimized for a precise measurement of the ions interaction time and position on the target. In this article we review the design of the upstream detectors along with the preliminary results of the data taking performed on August 2011 with 400 MeV/u fully stripped carbon ion beam at GSI. Detectors performances will be reviewed and compared to those obtained during preliminary tests, performed with 500 MeV electrons (at the BTF facility in the INFN Frascati Laboratories) and 80 MeV/u protons and carbon ions (at the INFN LNS Laboratories in Catania)

    Measurements of neutron cross sections for advanced nuclear energy systems at n_TOF (CERN)

    Get PDF
    INPC 2013 – International Nuclear Physics ConferenceThe n_TOF facility operates at CERN with the aim of addressing the request of high accuracy nuclear data for advanced nuclear energy systems as well as for nuclear astrophysics. Thanks to the features of the neutron beam, important results have been obtained on neutron induced fission and capture cross sections of U, Pu and minor actinides. Recently the construction of another beam line has started; the new line will be complementary to the first one, allowing to further extend the experimental program foreseen for next measurement campaign

    First Measurement of 72Ge(n,γ) at n_TOF

    Get PDF
    9th European Summer School on Experimental Nuclear AstrophysicsThe slow neutron capture process (s-process) is responsible for producing about half of the elemental abundances heavier than iron in the universo
    corecore