8 research outputs found

    Efficient Feedback Collection for Pay-as-you-go Source Selection

    Get PDF
    Article No. 1International audienceTechnical developments, such as the web of data and web data extraction, combined with policy developments such as those relating to open government or open science, are leading to the availability of increasing numbers of data sources. Indeed, given these physical sources, it is then also possible to create further virtual sources that integrate, aggregate or summarise the data from the original sources. As a result, there is a plethora of data sources, from which a small subset may be able to provide the information required to support a task. The number and rate of change in the available sources is likely to make manual source selection and curation by experts impractical for many applications, leading to the need to pursue a pay-as-you-go approach, in which crowds or data consumers annotate results based on their correctness or suitability, with the resulting annotations used to inform, e.g., source selection algorithms. However, for pay-as-you-go feedback collection to be cost-effective, it may be necessary to select judiciously the data items on which feedback is to be obtained. This paper describes OLBP (Ordering and Labelling By Precision), a heuristics-based approach to the targeting of data items for feedback to support mapping and source selection tasks, where users express their preferences in terms of the trade-off between precision and recall. The proposed approach is then evaluated on two different scenarios, mapping selection with synthetic data, and source selection with real data produced by web data extraction. The results demonstrate a significant reduction in the amount of feedback required to reach user-provided objectives when using OLBP

    Circulating miR-1254 predicts ventricular remodeling in patients with ST-Segment-Elevation Myocardial Infarction: A cardiovascular magnetic resonance study

    Get PDF
    Reliable noninvasive prognostic biomarkers for left ventricular (LV) remodeling in ST-segment elevation myocardial infarction (STEMI) are needed. This study aimed to evaluate a panel of circulating microRNAs (miRNAs) as biomarkers of LV remodeling using cardiovascular magnetic resonance (CMR). We prospectively evaluated patients with a first STEMI treated with primary percutaneous coronary intervention who underwent CMR imaging at 1 week and 6 months after STEMI (n = 70). miRNAs were measured using PCR-based technologies in plasma samples collected at admission. The associations between miRNAs and LV diastolic and systolic volumes, and ejection fraction at 6-months were estimated in adjusted models. Median age was 60 years, 71.4% were male. miR-1254 was significantly associated in univariate analyses. Patients in the highest tertile of miR-1254 exhibited lower values of LVEDVI and LVESVI and higher values of LVEF at 1 week. After comprehensive multivariate adjustment including clinical, CMR variables, hs-troponin-T and NT-proBNP, miRNA-1254 was associated with decreasing LVESVI (P = 0.006), and borderline negative associated with LVEDVI (P = 0.063) at 6-months. miR-1254 also exhibited a significant positive association with increasing LVEF during follow-up (P < 0.001). Plasma miRNA-1254 predicted changes in LV volumes and LVEF at 6 months after STEMI. The value of miR-1254 to inform tailored treatment selection and monitor ongoing efficacy deserves further investigation.DdG-C and VLl-C are members of the CardiolincTM network. DdG-C was a recipient of Juan de la CiervaIncorporación grant from the Ministerio de Economía y Competitividad (IJCI-2016-29393). CIBER Cardiovascular is a project of the Instituto de Salud Carlos III. VB was funded by the Instituto de Salud Carlos III and co-funded by FEDER (grant numbers PI17/01836 and PIE15/00013). TT was funded by the EU, project HOMAGE,the ERANET-CVD LIPCAR-HF and by Deutsche Forschungsgemeinschaf (DFG, KFO311). CB received support through Deutsche Forschungsgemeinschaf (BA5631/2-1).Peer reviewe

    Helicobacter pylori vacA s1m1 genotype but not cagA or babA2 increase the risk of ulcer and gastric cancer in patients from Southern Mexico

    No full text
    Abstract Background The vacA, cagA and babA2 genotypes of Helicobacter pylori are associated with gastric pathology. The objectives were to determine the frequency of infection and distribution of the vacA, cagA and babA2 genotypes of H. pylori in patients with gastric ulcer, chronic gastritis and gastric cancer, and to evaluate the association of virulent genotypes with diagnosis. Methods We studied 921 patients with symptoms of dyspepsia or with presumptive diagnosis of gastric cancer. The DNA of H. pylori and the vacA, cagA and babA2 genes was detected by PCR in total DNA from gastric biopsies. The association of H. pylori and of its cagA, vacA and babA2 genotypes with diagnosis was determined by calculating the odds ratio (OR). Results Chronic gastritis was confirmed in 767 patients, gastric ulcer in 115 and cancer in 39. The prevalence of H. pylori was 47.8, 49.6 and 61.5% in those groups, respectively. H. pylori was more frequent in the surrounding tissue (69.2%) than in the tumor (53.8%). The vacA s1m1 genotype predominated in the three groups (45.2, 61.4 and 83.3%, respectively). H. pylori was associated with cancer (ORadjusted = 2.08; 95% CI 1.05–4.13; p = 0.035) but not with ulcer (ORadjusted = 1.07; 95% CI 0.71–1.61; p = 0.728). The s1m1 genotype was associated with ulcer and cancer (ORadjusted = 2.02; 95% CI 1.12–3.62; p = 0.019 and ORadjusted = 6.58; 95% CI 2.15–20.08; p = 0.001, respectively). babA2 was associated with gastric cancer, and cagA was not associated with the diagnosis. Conclusions In population from Southern Mexico, H. pylori and the s1m1 genotype were associated with gastric cancer and the s1m1/cagA+/babA2+ strains predominated in tumor and adjacent tissue

    Evolution over Time of Ventilatory Management and Outcome of Patients with Neurologic Disease∗

    No full text
    OBJECTIVES: To describe the changes in ventilator management over time in patients with neurologic disease at ICU admission and to estimate factors associated with 28-day hospital mortality. DESIGN: Secondary analysis of three prospective, observational, multicenter studies. SETTING: Cohort studies conducted in 2004, 2010, and 2016. PATIENTS: Adult patients who received mechanical ventilation for more than 12 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among the 20,929 patients enrolled, we included 4,152 (20%) mechanically ventilated patients due to different neurologic diseases. Hemorrhagic stroke and brain trauma were the most common pathologies associated with the need for mechanical ventilation. Although volume-cycled ventilation remained the preferred ventilation mode, there was a significant (p &lt; 0.001) increment in the use of pressure support ventilation. The proportion of patients receiving a protective lung ventilation strategy was increased over time: 47% in 2004, 63% in 2010, and 65% in 2016 (p &lt; 0.001), as well as the duration of protective ventilation strategies: 406 days per 1,000 mechanical ventilation days in 2004, 523 days per 1,000 mechanical ventilation days in 2010, and 585 days per 1,000 mechanical ventilation days in 2016 (p &lt; 0.001). There were no differences in the length of stay in the ICU, mortality in the ICU, and mortality in hospital from 2004 to 2016. Independent risk factors for 28-day mortality were age greater than 75 years, Simplified Acute Physiology Score II greater than 50, the occurrence of organ dysfunction within first 48 hours after brain injury, and specific neurologic diseases such as hemorrhagic stroke, ischemic stroke, and brain trauma. CONCLUSIONS: More lung-protective ventilatory strategies have been implemented over years in neurologic patients with no effect on pulmonary complications or on survival. We found several prognostic factors on mortality such as advanced age, the severity of the disease, organ dysfunctions, and the etiology of neurologic disease
    corecore