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ABSTRACT
Technical developments, such as the web of data and web
data extraction, combined with policy developments such as
those relating to open government or open science, are lead-
ing to the availability of increasing numbers of data sources.
Indeed, given these physical sources, it is then also possible
to create further virtual sources that integrate, aggregate or
summarise the data from the original sources. As a result,
there is a plethora of data sources, from which a small subset
may be able to provide the information required to support a
task. The number and rate of change in the available sources
is likely to make manual source selection and curation by
experts impractical for many applications, leading to the
need to pursue a pay-as-you-go approach, in which crowds
or data consumers annotate results based on their correct-
ness or suitability, with the resulting annotations used to
inform, e.g., source selection algorithms. However, for pay-
as-you-go feedback collection to be cost-effective, it may be
necessary to select judiciously the data items on which feed-
back is to be obtained. This paper describes OLBP (Order-
ing and Labelling By Precision), a heuristics-based approach
to the targeting of data items for feedback to support map-
ping and source selection tasks, where users express their
preferences in terms of the trade-off between precision and
recall. The proposed approach is then evaluated on two
different scenarios, mapping selection with synthetic data,
and source selection with real data produced by web data
extraction. The results demonstrate a significant reduction
in the amount of feedback required to reach user-provided
objectives when using OLBP.

CCS Concepts
•Information systems → Mediators and data inte-
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1. INTRODUCTION
There are ever growing numbers of data sources resulting

from technology developments such as the ability to publish
to the web of data [19], or to extract data systematically
from web forms (e.g. [16]) or tables (e.g. [7]). In addition,
given numerous data sources, it is then possible to generate
even more numerous views that combine data from differ-
ent sources to provide an integrated representation of the
information of relevance to a user (e.g. [4]).

Abstracting over the precise origin of a data collection,
henceforth we use the term data source to refer to a struc-
tured data collection to which we have access but over which
we may have little control; this data resource may either
represent a materialized data source or a virtual data source
(e.g. produced using schema mappings).

As the available data sources may be of variable quality
or relevance, it may be important for the quality or cost
of the user experience to select a subset of the available
sources that meet their needs. As a result, source selection
has been studied by others, where selection criteria have
included features such as economic value [12], freshness [31]
and quality [29].

Where there may be a large and rapidly changing pool
of sources, it may be difficult, or prohibitively expensive,
for experts to manually select the sources that meet user
needs. As a result, in this paper we focus on pay-as-you-go
approaches, particularly in which there is automated data
extraction or mapping generation, with user feedback on
values from the sources. We envisage that feedback may take
the form of true or false positive annotations on data items,
an approach that has been followed for different data access
and integration tasks (e.g. [3, 6, 34]); such feedback could
potentially come from end users or from crowd workers.

Pay-as-you-go approaches show promise when dealing with
web scale data [26], but it is clearly necessary to try to max-
imise the return on investment; obtaining feedback from
users or crowds involves costly human effort. Making the
best use of sources involves making well informed decisions
as to which feedback can yield the greatest improvement in a
result. There has been significant recent interest in targeting
the most effective feedback, in particular for crowdsourcing
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(e.g. [11, 21, 23, 28, 35]).
In this paper, we contribute further to this active line of

research into cost-effective feedback collection, by investi-
gating pay-as-you-go data source selection. We assume that
the user may be willing to trade off precision (the fraction
of the data items in the selected sources that are correct)
with recall (the fraction of the correct data items that are
included in the selected sources). For example, the user may
want the system to maximise the precision of the data from
the selected sources, subject to the constraint that these
sources must contain at least half of the correct data (i.e.
recall > 0.5). However, in general we do not know the pre-
cision or recall of the available data sources, so these need
to be estimated based on feedback. Assume we have a fixed
budget that allows us to collect feedback on f data items.
The problem is to identify the f data items on which feed-
back should be obtained in order to allow the most effective
decisions to be made on which sources to use.

Note that in this problem we are interested in obtaining
a set of sources that together best meet the user’s require-
ments, and not the single best source; this distinction with
some earlier results (e.g. [11, 23]) turns out to be signifi-
cant in practice. In addressing this problem, we make the
following contributions:

1. an investigation into the source selection problem, which
identifies the important role that the confidence level
in quality estimates plays in the production of suitable
results;

2. an algorithmic strategy that can be used to prioritise
data items for annotation, and then to efficiently select
a suitable subset of the available sources in the light
of the feedback received; and

3. an empirical evaluation of the approach in scenarios
where sources result from both mapping generation
and web data extraction, the latter building on real
web data sources.

Our contributions show that our proposed approach achieves
high quality source selection with fewer instances than the
baseline used for comparison. As such, this approach in-
creases the impact on quality of each requested feedback
instance.

The paper is structured as follows. In Section 2, we define
the problem more precisely, in particular identifying three
variants that are supported within our approach and the
role of feedback. In the light of the problem description,
in Section 3 we review related work on source selection and
on targeted feedback collection. In Section 4 we describe
the overall approach, which includes both targeted feedback
collection and source selection; the algorithms that describe
how the approach is implemented are detailed in Section
5. The approach is evaluated empirically in two different
technical settings, with algorithmically generated mappings
in Section 6, and with sources from web data extraction in
Section 7. Conclusions are presented in Section 8.

2. PROBLEM DESCRIPTION
The source selection problem we consider in this paper can

be defined as follows: given a set of sources, and feedback in
the form of true positive (TP) or false positive (FP) annota-
tions on the data items they contain, identify the subset of

the sources that best meets the user’s requirements in terms
of user-provided precision and recall thresholds.

In the light of this definition, we identify three different
ways in which the users can specify their requirements in
terms of precision and recall, in the context of a set of sources
S:
Variant MaxP: Maximise precision while meeting a recall
constraint.

maximise (for some S’ ⊆ S) precision(S’)
such that recall(S’) > recall-threshold

Variant MaxR: Maximise recall while meeting a precision
constraint.

maximise (for some S’ ⊆ S) recall(S’)
such that precision(S’) > precision-threshold

Variant MaxPN: Maximise precision while meeting a cardi-
nality constraint.

maximise (for some S’ ⊆ S) precision(S’)
such that |{s|s ∈ S′}| > cardinality-threshold

In Variant MaxP, a set of sources S′ is produced that
has maximum precision while satisfying the constraint that
the recall of S′ is greater than a given recall-threshold. For
example, assume that the user is interested in obtaining an
insight into the real estate market in an area. For this, the
user doesn’t need to look at every property in the area, but
may decide that a sample of 10% of the available properties
would be sufficient. Then, the user would like to have the
highest precision possible in the resulting sample. Hence
the request is to maximise precision such that the recall-
threshold is 0.1.

In Variant MaxR, a set of sources S′ is produced that
has maximum recall while satisfying the constraint that the
precision of S′ is greater than a given precision-threshold.
For example, assume that the user is interested in analysing
the used cars available in an area, as part of a study on
pricing trends. For this, the user requires good quality data,
and thus may want to use as many sources as possible (by
maximising recall) such that the precision-threshold is 0.95.

In Variant MaxPN, a set of sources S′ is produced that
has maximum precision, such that the number of data items
within S′ is greater than a given cardinality-threshold. For
example, assume that the user will browse real estate entries
manually, and expects only to look at 100 data items. For
this, the requirement is to identify the best quality sources
that can between them provide 100 distinct items.

These variants depend on precision and recall functions;
however, precision and recall are classically used to measure
results quality against a ground truth, to which we do not
have access, as the time and/or cost required to label every
single data item will be prohibitive in many scenarios. Thus
we use feedback to provide estimates of the ground truth.

The precision of a source (or sources) s in the context
of user feedback UF , can be estimated by counting true
positive (tp) and false positive (fp) annotations of s in UF :

precision(s, UF ) =
|tp(s, UF )|

|tp(s, UF )|+ |fp(s, UF )| (1)

Similarly, the recall of a source (or sources) s can be esti-
mated as follows:

recall(s, UF ) =
|tp(s, UF )|

|tp(S,UF )|+ |fn(S,UF )| (2)



where S is the complete set of sources and fn is the number
of false negative annotations of S in UF .

Now the problem is to identify the data items on which
to obtain feedback that will enable good precision and recall
estimates to be calculated, thereby allowing cost-effective
solutions to the optimization problems described above as
Variant MaxP, Variant MaxR and Variant MaxPN.

On these problem scenarios we consider a setting where
the human users providing feedback have been informed of
the intent of the source selection, e.g. to get the best avail-
able sources for Italian restaurants in the UK, and therefore
they are assumed to be able to provide feedback in line with
the intent, by being asked, if a given data item is a true
positive, against a provided conceptual model. We are also
assuming that the feedback provided contains no errors, but
several techniques can be applied to allow for unreliable ev-
idence (e.g. [38], [10]).

3. RELATED WORK
In the light of the problem description from Section 2,

here we discuss relevant related work, specifically for targeted
feedback selection, mapping selection and source selection.

3.1 Targeted feedback selection
This section discusses approaches to targeted feedback se-

lection, emphasising work on data management. We start by
reviewing results that build on active learning, which can be
seen as a generic strategy, and then describe bespoke tech-
niques developed to exploit knowledge of the task at hand.

Active learning builds on the hypothesis that a machine
learning algorithm can perform better if it is allowed to select
its own training data [32]. Given an oracle that is assumed
to be able to provide training data (e.g. the user of a system
or a crowd worker), active learning provides techniques for
selecting which questions to put to the oracle.

For example, Isele et al. [23] use active learning to obtain
feedback on which pairs of instances represent the same real
world objects, to inform the generation of linkage rules that
can be used for matching such instances [22]. Active learn-
ing has developed a range of question selection strategies;
Isele et al. use query-by-committee, where the most suitable
question is identified as a result of voting by a committee of
candidate solutions – in this case, each candidate solution is
a linkage rule. The question put to the user is established fol-
lowing a query by vote entropy strategy [32], that selects the
value about which the members of the committee disagree
the most. Thus each linkage rule identifies a set of pairs of
instances that it considers to be equivalent. The question
selection strategy then selects a pair that is considered to
match by some of the rules but not to match by others; the
pair about which there is most disagreement is identified
using an entropy measure. The empirical evaluation of the
approach showed both that much better f-measures for the
best rule could be obtained for a given amount of feedback
selected using active learning than when the feedback was
selected at random, and that good overall f-measures could
be obtained for a range of data sets when obtaining feedback
on a small portion of the overall data set.

Active learning has been used in a range of data manage-
ment problems. Also for record linkage, in Corleone [17], an
entropy measure is used to select pairs of records for feed-
back on which decision tree classifiers disagree the most,
with additional results on how to identify sets of pairs for

crowdsourcing and on deciding when to stop obtaining feed-
back. For web data extraction, Crescenzi et al. [11], use
active learning to distinguish between automatically gen-
erated extraction rules, with feedback on the results of the
rules obtained using a variant of vote entropy that takes into
account the probability of the correctness of the rules. For
large scale classification tasks, Mozafari et al. [28] investi-
gate the application of active learning for crowdsourcing, to
address issues such as obtaining sets of results from crowds,
coping with unreliable data, and generalising the approach
to arbitrary classification problems.

These approaches normally select a single item from a
collection, and therefore definitively discarding items is en-
couraged (e.g. [11, 22]), which differs from our problem in
that the solution may potentially include any item in the
collection to satisfy the user requirements.

However, some data management problems may not be
amenable to solution using existing active learning strate-
gies, and researchers have developed a number of bespoke
techniques for obtaining targeted feedback. A prominent
category is that of crowd database systems such as CrowdDB
[15] and Quirk [27]; in such systems, access to the crowd
takes place in the context of a query, and the query opti-
mizer takes responsibility for minimizing the cost of crowd
tasks taking into account the whole query, and possibly
other factors such as the reliability of different crowd work-
ers. In other examples, specific features of the problem play
a prominent role in targeting feedback. For example, for
skyline queries over incomplete data sets, Lofi et al. [25]
describe an approach that consults the crowd for missing
values based on the risk that a missing value poses to the
correctness of the skyline. The Crowdsourcing Data Analyt-
ics System (CDAS) [24] takes account of properties of both
the problem to be solved and the crowdsourcing setting in
trying to carry out just enough crowdsourcing. Initially,
a prediction is made of the number of crowd tasks needed
to obtain the required accuracy, and as results are received
from the crowd a verification process takes into account the
reliability of the participating workers to determine if more
answers are required.

In both the active learning and bespoke approaches, fea-
tures of the problem guide the feedback collection process.
In this paper we contribute a bespoke approach that, like
CDAS but for a different problem, aims to collect feedback
cost-effectively.

3.2 Mapping selection
Given techniques (e.g. [18]), that support the automated

generation of mappings for integrating data sources (for ex-
ample building on evidence from matchers), there is then the
problem of deciding which of the generated mappings to use.
There is a significant body of work on techniques, for use in
data integration tools, on validation [5] and refinement [36]
of mappings, some based on data examples [1]. However,
these typically focus on expert-driven enterprise data inte-
gration [4], rather than on the pay-as-you-go setting that is
the context for this paper.

There have been several proposals for pay-as-you-go map-
ping selection, for example using explicit feedback on the
mappings themselves (e.g. [8]), on mapping results (e.g.
[2]), or on implicit feedback via query logs (e.g. [13]). Per-
haps the most closely related study to the work in this paper
is Yan et al. [37], in which active learning is used to obtain



Figure 1: Sources with estimated precisions.

feedback on search results over structured data that is most
informative for reducing uncertainty about the validity of
the queries that produced the results. The feedback used by
Yan et al. is of a similar form to that required here, but the
objective is to refine understanding of individual mappings,
whereas our objective is to identify a set of mappings that,
together, meet user-specified requirements. In our approach,
mappings are selected based only on estimates of the pre-
cision and recall of their results that in turn build on user
feedback, as detailed in Section 2.

3.3 Source selection
There are many drivers for the provision of ever more

data sources on the web, as diverse as open government ini-
tiatives and e-commerce, for which structured data may be
published directly (e.g. in the web of data [19]), or extracted
programmatically (e.g. from web forms [16]). As these are
typically of variable quality, and have significant overlaps,
there is a recurring need to identify subsets of the sources
that meet user requirements.

In Dong et al. [12], sources are added to a collection when
it is predicted that the value of the new data outweighs the
cost of obtaining it, with the estimated financial value of a
source being based on the predicted accuracy of its contents.
This is part of a strand of research that seeks to automati-
cally infer the quality of sources [30]. There have also been
pay-as-you-go approaches to source selection, in which new
or existing feedback on search results is used to inter-relate
new and existing sources [33], and in which the user iter-
atively steers a source selection search by indicating their
priorities in terms of the attributes that are required and
the priority the user gives to certain quality metrics. This
paper shares some objectives with these other results, but
selects sources based on different criteria, and emphasises
cost-effective targeting of user feedback.

4. TARGETING FEEDBACK USING CON-
FIDENCE

This section describes the approach taken to the targeting
of feedback to inform source selection.
Consider a source selection problem of the form:

maximise (for some S’ ⊆ S) precision(S’)
such that recall(S’) > recall-threshold

Having the following set of candidate sources from which a

subset will be selected: S = {s1, · · · , s6}, and assume that
feedback has been obtained on all sources in S, so that each
si has an estimated precision, by using Equation 1, each of
which has an associated sampling error that results from
the fact that the feedback is partial. The sampling error is
the range within which the true value is estimated to be,
with some level of confidence. Figure 1 shows the estimated
precisions for sources in S, along with their sampling errors,
represented by error bars denoting confidence intervals.

To meet the given recall-threshold a subset of the sources
is selected, and its complement is excluded. The horizon-
tal dashed line in Figure 1 separates candidate sources from
excluded sources. The line can be seen as categorizing two
subsets: (i) sources with precisions that may lie above the
line (given the confidence associated with their sampling er-
rors) are candidates to be selected (in the figure); and (ii)
sources with precisions that lie below the line (with the con-
fidence associated with their sampling errors) are not candi-
dates to be selected ({s5, s6} in the figure). Sources {s5, s6}
are not candidates because the recall-threshold can be met
using only the set of sources {s1, s2, s3, s4}.

Our source selection approach builds on the following:

1. Obtaining a dependable precision estimate of a set
of candidate sources requires reliable estimates of the
numbers of true and false positives in each candidate
source. This follows from the definition of precision in
Section 2; the precision estimate of a set of sources s
depends only on feedback on the members of s.

2. The recall of a collection of sources depends on having
a dependable estimate of the numbers of true positives
not only for the candidate sources, but also for the
collection as a whole. This follows from the definition
of recall in Section 2; the precision of a set of sources
s depends not only on feedback on the members of s,
but also on an estimate of the recall of the complete
collection of sources S.

3. For a given problem, it may be appropriate to collect
more feedback on some sources than others in order to
make well informed decisions on which sources should
be included.

In relation to (3) above, in Figure 1, the feedback on
sources s5 and s6, which are not deemed candidates for in-
clusion in the solution, does not contribute to good precision
estimates for candidate solutions. Furthermore, feedback on
sources s5 and s6 does not contribute to the numerator of
the definition of recall in Section 2. Indeed, as discussed
below, we can estimate the number of true positives in the
complete collection of sources S for the denominator of the
definition of recall in Section 2 without needing dependable
estimates of the numbers of true positives in all the sources
contributing to S. We will describe how feedback can be tar-
geted in such a way as to: (i) allow sources to be excluded
from further feedback collection as soon as it is established
by prior feedback collection that they are not candidates for
inclusion in the solution; and (ii) focus feedback in a way
that contributes efficiently to the precision and recall esti-
mates that inform mapping selection.

Our strategy is to reduce the sampling error for those
sources with higher estimated precision, on which we will
need to collect more feedback instances to improve their



precision and recall estimates. The sampling error is the
margin of error around our precision or recall estimates; the
greater this margin the less confidence we have in those es-
timates. To compute the sampling error we are assuming a
target confidence level of 95%. The associated z-score z for
that confidence level is 1.96, assuming a normal distribution.

To obtain the margin of error e we use the classical for-
mulas from statistical theory for standard error se, finite
population correction factor fpc and margin of error e [14]:

ses =

√
ˆqms · (1− ˆqms)

Ls
(3)

fpcs =

√
Ts − Ls

Ts − 1
(4)

es = z · ses · fpcs (5)
where s is a source in S, ses is the standard error, fpcs is
the finite population correction factor, Ls is the number of
feedback instances collected for s, Ts is the total number of
records produced by s, and ˆqms is the population proportion
or estimated quality measure (estimated precision p̂ or recall
ŝ). The result is the margin of error around our estimate,
e.g. p̂s ± es, for a given confidence level.

The finite population correction factor is used in those
scenarios where the number of records is relatively small,
for instance when it is required to collect feedback from less
than 5% of the available records.

As our strategy focuses on improving initial estimates for
precision and recall, and as shown in Equation 2 recall esti-
mates are based on feedback instances collected from all the
candidate sources, we need to obtain an initial sample for
bootstrapping for our approach.

Given that the traditional formula for recall in Equation 2
requires the number of false negative annotations, and this
can only be obtained by knowing the ground truth, and that
the relevant true positive annotations for all the sources in
S may be biased by the targeted nature of our algorithm,
in which we are collecting more feedback from only a sub-
set of the available sources (those on which we have bet-
ter estimated quality), we decided to modify the traditional
definition of recall with the following that considers both
limitations (lack of false negatives and biased sampling):

recall(s, iUF ) =
|tp(s, iUF )|
|tp(S, iUF )| (6)

where S is the set of all sources and iUF is an initial random
sample of user feedback collected from all the sources in S
obtained prior to the process of feedback collection.

A critical element for bootstrapping is to obtain a repre-
sentative initial sample from the data. To compute a suit-
able sample size we can rely on the traditional formula for
the sample size for estimated proportions ss0 (in our case
estimated precision p̂ or recall r̂) which is as follows [9, 20]:

ss0 =
z2 · p · (1− p)

e2
(7)

where p represents the estimated proportion (initial estimate
for precision p̂ or recall r̂), e is the required margin of error
for our initial sample, and z represents the z-score for a
required confidence level assuming a normal distribution of
the data.

Equation 7 applies for large populations, but consider-
ing that in our case some sources may produce rather few
records (e.g. less than 100) we need to apply the finite pop-

ulation correction factor [9, 20] to Equation 7, resulting the
following formula to compute the initial sample size for finite
populations ss:

ss =
T · ss0

ss0 + (T − 1)
(8)

where T is the number of distinct items produced by sources
in S.

In applying these formulas: we set p, the initial popula-
tion proportion to 0.5 (in our case this represents the initial
estimate for precision p̂ or recall r̂); the z-score z is set to
1.96, representing a default confidence level of 95%; and the
margin of error e is set to 0.05, based on the results from
experiments performed over different data sets and quality
distributions. We should also assume that all the sources
produce a minimum number of records (e.g. 30 instances
each), otherwise we will obtain unreliable estimates.

5. ALGORITHM
In this section, we describe our algorithm for source selec-

tion using feedback collected in a pay-as-you-go fashion. As
the algorithm is based on an ordering of the sources based
on their estimated precision, we will refer to the approach as
OLBP (Ordering and Labelling By Precision). The pseudo-
code for the algorithm is given in Figure 2.

The algorithm takes as input: S – a collection of sources
from which we need to select a subset that together satisfy
constraints in the form of one of the variants from Section
2; U – the set of (unlabelled) data items from the sources in
S; var – which is either MaxP , MaxR or MaxPN ; thr –
the value of the threshold corresponding to var; step – the
default number of feedback items that will be obtained in a
single interaction with crowd workers or users; budget – the
total number of items of feedback that can be obtained; conf
– the confidence level required for the estimations; and err –
the margin of error also required to compute the estimations.
The result of the algorithm is a set of sources S′ ⊆ S.

To select sources from those available, we require an initial
sample of the data therein; this will bootstrap the quality es-
timates of the candidate sources, and enable recall estimates
based on Equation 6. To obtain these estimates we need to
compute the initial sample size iStep using Equation 8 (line
2). This sample (and subsequent samples augmented with
feedback) are used to compute the margins of error for the
precision and recall estimates (line 10).

The feedback collection process is implemented by the
getFeedback function, which takes as arguments the set of
sources S, the set of unlabelled data items U , the number of
additional data items on which feedback is required step and
the cut-off computed by our approach lowP . For experimen-
tal evaluation purposes, items may be labelled depending on
the required strategy (RND for random selection and OLBP
for our approach). The getFeedback function randomly se-
lects from U at most step data items to be annotated. The
sources considered in this selection depend on required strat-
egy. For random selection, all sources in S are considered.
For the OLBP strategy, the cut-off parameter lowP is used
to identify the subset of sources in S that are above or over-
lapping this cut-off; this has the effect of refining the esti-
mates only for those sources that are candidate members of
S′. During the first iteration the algorithm always selects
iStep data items from all candidate sources in S, to provide
enough information for bootstrapping (line 6), and then on



it follows the required strategy (line 8).
After some feedback has been collected by using getFeed-

back, and the quality of the sources estimated (line 10), the
sources are sorted by their estimated precision in descend-
ing order (line 14). These sorted sources are then combined
following a greedy approach (lines 15-26), that gives prefer-
ence to those sources with the highest estimated precision,
and stops when the threshold is met (lines 17-22). If the
threshold is not yet reached by adding the new sources to
the subset of candidate sources S′, we compute a new cut-off,
to divide those sources that will be considered in a potential
solution from those that will not (lines 16 and 23-25). On
the other hand, if the threshold is met by adding the new
sources to the collection of candidate sources S′, the process
finishes but, for the case of MaxR we need to remove the
last added sources from S′ or the estimated precision will
drop below the threshold (lines 18-20). This process repeats
until we run out of budget (line 27), measured in terms of
feedback instances, and the set of selected sources that fulfil
the threshold is returned (line 28).

When selecting the sources sorted by their estimated pre-
cision, we ensure that only the sources with the highest pro-
portion of true positive annotations are considered for the
solution, and we assume that the rest of the sources (with
lower estimated precision), if added to the collection, will
only diminish its overall quality.

5.1 Maximising precision for a given recall
To illustrate the algorithm in practice for the problem

Variant MaxP from Section 2, we use the example in Fig-
ure 4, which describes the properties of 6 sources with differ-
ent precisions and recalls, to see how the algorithm selects
the feedback based on the defined criteria and on evolving
precision and recall estimates.

In this case, the stopping condition for the source selection
is when the accumulated estimated recall for the selected
sources S′ is greater or equal to the required constraint,
therefore the portion of method thresholdMet for this prob-
lem variant is defined as in Figure 3 (lines 2 and 3).

We start considering the candidate sources described in
Figure 4 to represent a simple execution of the algorithm
collecting 10 feedback instances at a time and defining a hard
recall constraint of 0.8. In Figure 4, there are 6 sources (S1

to S6), each of which return 1,000 items, where the precisions
and recalls of the sources cover a wide range of values.

Initially, we collect 10 feedback instances for bootstrap-
ping from all sources randomly (lines 5-6 in Figure 2), ob-
taining the precision and recall estimates indicated in the
row labeled “Iteration 0” in Figure 4. In this figure dark
gray indicates a source included in the selected subset S′,
and light gray indicates an unselected but still considered
source for feedback collection in current iteration.

If we sort the sources by their estimated precision (line
14), we will include S1 to S3 in subset S′, as combined they
have an estimated precision of 0.666 (20 TPs over 30 to-
tal data items collected for these sources) and a recall of
0.869 (20 TPs from selected sources over 23 produced by
all sources). The cut-off lowP to separate good candidate
sources from the others will be 0.2 as this is the lowest esti-
mated precision for all sources in S′.

Based on the previous selection, in the next iteration of
the outer loop (lines 3 and 27) we will collect feedback (line
8) only on those sources above and overlapping the cut-off

Input: set of sources S
Input: set of unlabelled data items U
Input: a variant type var
Input: a threshold value thr
Input: a default step size step
Input: a budget size budget
Input: a confidence level conf
Input: a margin of error err
Output: set of selected sources S′

1: L← {}, iL← {}
2: iStep← getSampleSize(S, conf, err)
3: repeat
4: S′ ← {}, lowP ← 1
5: if size of L = 0 then
6: iL← L← getFeedback(S,U, iStep,RND, conf, 0)
7: else
8: L← getFeedback(S,U, step,OLBP, conf, lowP )
9: end if

10: estimateQuality(S,L, iL, conf, err)
11: if (size of U - size of L) < step then
12: step← (size of U - size of L)
13: end if
14: S ← sortByEstPrecisionInDescOrder(S)
15: while s← getNextAvailableSource(S) do
16: S′ ← S′ ∪ s
17: if thresholdMet(S′, var, thr) then
18: if var = MaxR then
19: S′ ← S′ − s
20: end if
21: break
22: end if
23: if estimatedPrecision(s) < lowP then
24: lowP ← estimatedPrecision(s)
25: end if
26: end while
27: until size of L < budget
28: return S′

Figure 2: SelectSources algorithm

Input: subset of sources S′

Input: a variant type var
Input: a threshold value thr
Output: boolean value stating if threshold was met or not
1: switch var do
2: case MaxP
3: return (estimatedRecall(S′) >= thr)
4: end case
5: case MaxR
6: return (estimatedPrecision(S′) < thr)
7: end case
8: case MaxPN
9: return (estimatedCardinality(S′) >= thr)

10: end case
11: end switch

Figure 3: thresholdMet function



Figure 4: Example of source selection scenario.

(S1 to S5), as S6 is below the cut-off and therefore is not
considered for further feedback collection to avoid wasting
effort on it. The new round of collected feedback yields the
precision and recall estimates indicated in the row labeled
“Iteration 1” in Figure 4.

If we again sort the sources by their revised precision es-
timates (line 14), we will select again S1 to S3 to form the
subset S′, as combined they have an estimated precision of
0.633 (38 TPs over 60 total items collected for these sources)
and a recall of 0.883 (38 TPs out of 43 are produced by the
selected sources). The cut-off lowP will now be 0.24.

If we collect feedback one more time, on those sources
above and overlapping the cut-off (S1 to S4), we have the
new estimates for precision and recall indicated in the row
labeled “Iteration 2” in Figure 4. At this point we will raise
the cut-off to 0.26 leaving the source S4 out of contention
for more feedback collection, and we will focus the feedback
on selected sources to refine their estimates.

This process continues until the allocated budget has been
exhausted and the final selection of sources (that meet the
constraint) is returned to the user.

5.2 Maximising recall for a given precision
In the case of the problem labelled as Variant MaxR in

Section 2, there is a hard constraint on precision, and the
goal is to select a subset of sources that meet this constraint
while maximising the associated recall. The steps are as in
the previous variant except the stopping condition used to
determine when the subset of selected sources has met the
required threshold.

The break condition for the source selection in Variant
MaxR is when the accumulated estimated precision for the
subset of selected sources in S′, combined with next candi-
date sources r, is below the required constraint. To support
this, the function thresholdMet includes this problem vari-
ant as shown in Figure 3 (lines 4 and 5); in this case we are
adding elements to the collection of candidates just before
the estimated precision falls below the required threshold.

5.3 Maximising precision for a given result size
In the case of the problem labelled as Variant MaxPN

in Section 2, there is a hard constraint on the number of
data items required from the selected sources, and the goal
is to select a subset of sources that meet this constraint
while maximising the associated precision. The steps are
as in the previous variants, the only difference being in the
stopping condition used to determine when the subset of
selected sources has reached the required threshold.

The stopping condition for Variant MaxPN, is when the
accumulated estimated number of data items returned by
the subset of selected sources S′ is greater than or equal to

the required constraint (lines 6 and 7 in Figure 3).

6. EVALUATION: MAPPING SELECTION
In this section, we evaluate the the OLBP approach from

Section 5, for selecting sources that are the result of running
schema mappings; as such, the sources are virtual. In the
experiment, we consider global-as-view mappings, which re-
late one element in the integration schema to a query over
the source schemas. We also adopt the relational model for
expressing integration and source schemas.

6.1 Experimental setup
For for mapping selection, we used IBM Infosphere Ar-

chitect1 to create mappings from the Mondial database2 to
a target schema relating to European cities. The resulting
test set contained 100 mappings, producing in total 100,000
data items (tuples). The database and ground truth were
created in such a way that the size and quality of the map-
pings varies. The objective was to make it challenging to
find collections of mappings with sufficient precision and re-
call to fulfil some of the optimisation targets. As a result,
for example, the test set does not contain mappings with
both high precision and recall, as a single mapping with
precision and recall of 1.0 would trivially satisfy all require-
ments. Each of the 3 mapping selection experiments was
repeated 20 times to the impact of the random selection of
data items for feedback, and the average value of each prop-
erty (precision, recall) was used to produce the results. A
95% confidence level with an initial error margin of 0.5 was
used for these experiments. OLBP is compared against a
random selection of data items because we are not aware
of another solution to the problem addressed here, as men-
tioned in Section 3. In general, the feedback required is
relatively low for the mapping selection experiments (1-5%
of the available data items), as we are dealing with a large
number of tuples (100,000) and require only an small frac-
tion to obtain reliable estimates.

We evaluated the proposed strategy on Variants MaxP,
MaxR and MaxPN defined in Section 2, by comparing the
random selection of data items for feedback collection against
the items identified using our OLBP approach, to investigate
under what circumstances and to what extent the technique
provides an improved return on investment. The random
selection of data items is carried out in the context of the
SelectSources algorithm from Figure 2, except that getFeed-
back selects items at random from the union of the data
items in the sources in S.

6.2 Results
Similar experiments have been carried out for each of the

three variants. In each case, the control variable is the con-
straint threshold, and we provide three graphs that:

1. Compare the percentage of data items that must be
labelled with OLBP and using random feedback selec-
tion to meet the constraint threshold. The constraint
threshold is considered to be met when the estimated
value for the constrained variable equals or exceeds the
threshold for the first time, given that we have labelled
a number of tuples equal to or greater than the sample

1http://www-03.ibm.com/software/products/en/ibminfodataarch
2http://www.dbis.informatik.uni-goettingen.de/Mondial
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Figure 5: Results summary for recall constraint on mapping selection experiments, presenting (a) the feedback
required to meet the constraint threshold, (b) the amount of feedback required to get the maximum actual
precision after the constraint threshold is reached, and (c) the actual precision for different feedback amounts.

size computed using Equation 7 in line 8 of Figure 2. If
the threshold is reached before acquiring this number
of labelled tuples the objective has not been met, as
the sample collected is not sufficiently representative.

2. Compare the percentage of data items that must be
labelled with OLBP and using random feedback selec-
tion to obtain the highest value, for the variable to be
maximised, once the constraint threshold was reached.
The maximum value is considered to be reached when
the estimated value for the variable to be maximised
reaches a stable point, with variations between feed-
back collections equal to or less than 0.001 in the scale
0 to 1, given that we have labelled a number of tuples
equal to or greater than the sample size computed us-
ing Equation 7 in line 8 of Figure 2. If the maximum
value is reached before acquiring this number of la-
belled tuples the objective has not been met, as the
sample collected is not sufficiently representative.

3. Compare the values of the variable to be maximised
by using different amounts of feedback.

6.2.1 Maximise precision for a given recall
For this problem variant the control variable is the recall

constraint, which takes on the values 0.2, 0.4, 0.6 and 0.8.
The constraints of 0 and 1 are trivially satisfied, the first
by choosing no mappings, and the second by selecting all
available mappings. Results are given in Figure 5.

Figure 5 (a) compares the amount of feedback required to
meet the threshold for each of the recall constraints. The
dashed line represents a 1 to 1 correspondence between col-
lection of feedback on randomly selected mapping results
and results identified for feedback using OLBP. A result
above the line indicates that OLBP has met the thresh-
old with less feedback. OLBP meets the threshold earlier
than random, except in the case of recall ≥ 0.2, where both
approaches reach the threshold with the same amount of
feedback. For the higher thresholds, fewer mappings are se-
lected, and thus OLBP is able to target feedback collection
on a smaller number of candidate mappings.

Figure 5 (b) compares the amount of feedback required
to get the maximum actual precision after the constraint

threshold is reached. The results are favourable for OLBP,
and the difference increases as the recall threshold is raised.

Figure 5 (c) compares the precision obtained for the se-
lected subset of mappings, for increasing amounts of feed-
back and for the 4 constraint levels. In this case, the differ-
ence between our strategy and random results is marginal.
However, these results need to be seen within the context of
Figure 5(a). Where small percentages of the data items have
been labelled, random often misses the recall constraint, so
OLBP not only meets the constraint with less feedback but
also provides comparable (generally better) overall preci-
sion. In Figure 5(c), results that have been obtained without
meeting the hard constraint are marked with diagonal lines.

6.2.2 Maximise recall for a given precision
For this variant, the experiments are similar to those for

Variant MaxP, but now the precision constraint is the con-
trol variable, taking the values: 0.2, 0.4, 0.6, 0.8 and 1.0 (or
highest precision possible). The constraint of 0 is trivially
satisfied by choosing no mappings. Results are in Figure 6.

In Figure 6 we have 3 plots comparing: (a) the amount
of feedback required to meet the precision constraint; (b)
the amount of feedback needed to reach a maximum stable
recall; and (c) the recall for different amounts of feedback
collected with each of the different precision constraints.

In Figure 6 (a) and (b) it is evident that OLBP outper-
forms random by requiring much less feedback to meet the
required threshold and to obtain a maximum stable recall.

In Figure 6 (c) the apparent recall advantage of the ran-
dom approach is a consequence of the low precision obtained
at these feedback amounts. For example, taking the case
of the high precision constraint (≥ 0.8), the random ap-
proach requires 6 times more feedback to meet the precision
threshold, and before reaching this threshold the precision
obtained is well below it. This has the consequence of a
higher recall than our approach, but this is only because
in the random case we have not yet reached the hard con-
straint. Thus the untargeted random feedback selection is
leading to inappropriate mapping selection decisions being
made until a lot of feedback has been collected, and thus the
user’s requirements are not being met.

6.2.3 Maximise precision for a given result size
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Figure 6: Results summary for precision constraint on mapping selection experiments, presenting (a) the
feedback required to meet the constraint threshold, (b) the amount of feedback required to get the maximum
actual recall after the constraint threshold is reached, and (c) the actual recall for different feedback amounts.

(a) (b) (c)

Figure 7: Results summary for number of data items constraint on mapping selection experiments, presenting
(a) feedback required to meet the constraint threshold, (b) amount of feedback required to get the maximum
actual precision after constraint threshold is reached, and (c) actual precision for various feedback amounts.

In this case the experiments are similar to the other vari-
ants, except that the control variable is number of data
items. The target was chosen to be small (1, 5, 10 % of
available items), to reflect the case where a user expects to
manually inspect a small collection. Results are in Figure 7.

In Figure 7 (a) and (b), as with Variants MaxP and MaxR,
we again have better results for OLBP than for random,
with random often needing many times more feedback to
meet the constraint or to reach a maximum precision.

In Figure 7 (c) the precision obtained by OLBP is signifi-
cantly higher than for random. No initial sample is collected
by OLBP as we do not need recall estimates, so OLBP can
focus from the beginning on selecting mappings based on
their estimated precisions. In so doing, OLBP targets those
mappings that produce more correct results (highest preci-
sion), this allows OLBP to meet all the constraints tested.
Random, in contrast, keeps collecting feedback from every
mapping regardless of its quality and, given that in this
data set we have a larger proportion of false positives in
general, random collects an smaller proportion of true pos-
itive labelled tuples which prevent it from reaching those
constraints that require more correct results (5 and 10%),
indicated in the figure by diagonal lines, even when collect-

ing a similar amount of feedback than OLBP. In this case,
unlike the previous graphs, the precision does not decrease
as we increment the percentage of required correct results.
This is because in this scenario, there is no trade-off between
precision and recall, therefore the initial maximum precision
is maintained while the approach tries to collect enough data
items to fulfill the required threshold.

7. EVALUATION: WEB DATA SOURCE SE-
LECTION

7.1 Experimental setup
In this section we evaluate the OLBP approach described

in Section 5 on sources obtained from web data extrac-
tion. Specifically, we used real-world data sets produced
using OXPath wrappers induced by DIADEM [16] from web
sources in the UK Real State domain3. The resulting data
set has 79 sources, producing in total 7,612 different tuples;
the quality and number of records produced by the sources
varies. Extracted tuples have properties from the real state

3http://diadem.cs.ox.ac.uk/evaluation/14/02/reports/refull



domain such as address, price and number of bedrooms. In
contrast, comparing against previous experiments, the feed-
back required for source selection experiments is high (5-27%
of the available data items), as in this case we are dealing
with a smaller number of tuples (7,612) and therefore we
require a larger fraction to obtain reliable estimates.

We evaluate OLBP on the problem variants defined in
Section 2, using experiments analogous to those for mapping
selection in Section 6. Each of the 3 source selection exper-
iments was repeated 20 times to reduce variations inherent
to the random selection of data items, and the average value
of each property (precision, recall) was used for the results.
Assuming 95% confidence level and error margin of 0.5.

7.2 Results

7.2.1 Maximise precision for a given recall
For this problem variant, as in mapping selection, 4 ex-

periments were executed to represent scenarios requiring a
minimum recall of 0.2, 0.4, 0.6, 0.8 while maximising preci-
sion. In these experiments, the constraints of 0 and 1 are
trivially satisfied by choosing no sources, or selecting all the
available sources, respectively. Results are in Figure 8.

Figure 8 (a) shows the amount of feedback required to
reach the threshold for each constraint, with a dashed line
representing a 1 to 1 relation between the two approaches.
In this scenario the results are closer between the random
selection of data items and the OLBP approach, as we need
to sample a bigger fraction of smaller sources to yield a given
confidence than that required for a larger source. However,
OLBP still outperforms random for all tested scenarios.

In Figure 8 (b) the amount of feedback required to reach a
maximum precision once the threshold has been met presents
the same favourable results for OLBP as it requires less feed-
back instances to satisfy the constraint and also to meet the
optimisation target by maximising the precision. The re-
sults are better for OLBP for low recall constraints, as this
requires the search to identify fewer high-quality sources,
which benefits from the targeted feedback.

Figure 8 (c) shows the actual precision obtained by both
approaches for different amounts of feedback. When the
value presented corresponds to a feedback amount where
the threshold has not been reached the bar is presented with
crossing diagonals. Again, OLBP performs better than ran-
dom in maximising the precision for those feedback amounts
where the threshold has been reached, and in many cases the
threshold was missed when collecting feedback randomly.

7.2.2 Maximise recall for a given precision
For this problem variant, five thresholds were considered

to represent scenarios requiring a minimum precision of: 0.2,
0.4, 0.6, 0.8 and 1.0 (or highest possible precision), while
maximising recall. The constraint of 0 is trivially satisfied
by choosing no mappings. Results are given in Figure 9

In Figure 9 (a), OLBP reaches the threshold with far less
feedback collected than in the random approach; this is more
evident for higher precision constraints as they require better
estimates to meet increasingly challenging thresholds.

Figure 9 (b) again shows a clear reduction in the number
of feedback instances required to achieve maximum stable
levels of recall once the threshold constraint is reached; the
higher the precision constraint the larger the difference be-
tween OLBP and random selection of data items.

In Figure 9 (c) the bars with crossing diagonals represent
recall values for random item selection for feedback amounts
where the precision constraint was not reached therefore,
while both approaches seem to have similar levels of recall
in most cases, OLBP achieves these values after fulfilling the
required constraint whilst random does not.

7.2.3 Maximise precision for a given result size
To conclude, we investigate the third problem variant, for

scenarios that aim to obtain 1, 5 and 10 percent of the avail-
able data items while maximising the precision, representing
a user search that seeks to obtain a small subset of the avail-
able records. Results are shown in Figure 10.

In Figure 10 (a) the feedback required by the random
selection of tuples to reach the constraint threshold is several
times higher than that required by OLBP, particularly for
smaller subsets of data items as this requires a finer source
selection while deeply relying on their precision estimates.

Figure 10 (b) shows how OLBP outperforms the random
approach by reaching a maximum actual precision once the
constraint has been fulfilled with smaller feedback amounts.

Finally, in Figure 10 (c) the actual precision achieved by
both approaches is compared. In this plot the difference be-
tween the maximised precision for OLBP and the random
selection of data items is especially noteworthy, as only 2 val-
ues obtained for the random strategy satisfy the constraint,
and in both cases the maximised precision is significantly
lower than the corresponding value for OLBP. In this case,
unlike previous graphs, the precisions do not decrease when
incrementing the threshold, as there is no trade-off between
precision and recall, and the maximum precision is main-
tained while data items are obtained to meet the threshold.

In summary, after analysing the results, we found that
OLBP outperforms the random selection in all the scenarios
tested, resulting in a significant reduction of the amount
of feedback required, particularly where user’s requirements
can be met using a small portion of the available sources.

8. CONCLUSIONS
The proliferation of data sources means that it is increas-

ingly important for data consumers to be able to characterise
and select subsets of the available sources in a cost-effective
manner. In pay-as-you-go source selection, users or crowd
workers provide feedback on data from the sources, which in
turn informs the selection process. This paper has presented
an approach to targeting data items for feedback, with a
view to enabling cost-effective source selection; specifically,
the contributions include:

• A strategy for efficient feedback collection that takes
into account both the estimated precision of sources
and the confidence in those estimates.

• The application of the strategy on three variants of the
source selection problem that involve trading-off pre-
cision and recall, specifically maximising precision for
a given recall, maximising recall for a given precision,
and maximising precision for a given cardinality.

• The evaluation of the strategy on both materialized
and virtual data source selection problems, with re-
sults that show the approach can substantially reduce
the amount of feedback required. While the benefits
are not consistently as large in all cases, they are sig-
nificant in almost all scenarios.
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Figure 8: Results summary for recall constraint on source selection experiments, presenting (a) the feedback
required to meet the constraint threshold, (b) the amount of feedback required to get the maximum actual
precision after the constraint threshold is reached, and (c) the actual precision for different feedback amounts.

(a) (b) (c)

Figure 9: Results summary for precision constraint on source selection experiments, presenting (a) the
feedback required to meet the constraint threshold, (b) the amount of feedback required to get the maximum
actual recall after the constraint threshold is reached, and (c) the actual recall for different feedback amounts.
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