266 research outputs found

    Are existing soils data meeting the needs of stakeholders in Europe? An analysis of practical use from policy to field

    Get PDF
    Soils form a major component of the natural system and their functions underpin many key ecosystem goods and services. The fundamental importance of soils in the environment means that many different organisations and stakeholders make extensive use of soils data and information in their everyday working practices. For many reasons, stakeholders are not always aware that they are reliant upon soil data and information to support their activities. Various reviews of stakeholder needs and how soil information could be improved have been carried out in recent years. However, to date, there has been little consideration of user needs from a non-expert perspective. The aim of this study was to explore the use of explicit and hidden soil information in different organisations across Europe and gain a better understanding of improvements needed in soil data and information to assist in practical use by non-expert stakeholders. An on-line questionnaire was used to investigate different uses of soils data and information with 310 responses obtained from 77 organisations across Europe. Results illustrate the widespread use of soil data and information across diverse organisations within Europe, particularly spatial products and soil functional assessments and tools. A wide range of improvements were expressed with a prevalence for finer scale resolution, trends over time, future scenarios, improved accuracy, non-technical supporting information and better capacity to use GIS. An underlying message is that existing legacy soils data need to be supplemented by new up-to-date data to meet stakeholder needs and information gaps

    An air shower array for LOFAR: LORA

    Get PDF
    LOFAR is a new form of radio telescope which can detect radio emission from air showers induced by very high-energy cosmic rays. It can also look for radio emission from particle cascades on the Moon induced by ultra high-energy cosmic rays or neutrinos. To complement the radio detection, we are setting up a small particle detector array LORA (LOfar Radboud Air shower array) within an area of 300\sim 300 m diameter in the LOFAR core. It will help in triggering and confirming the radio detection of air showers with the LOFAR antennas. In this paper, we present a short overview about LORA and discuss its current status.Comment: 10 pages (using article.cls), 6 figures, accepted for the proceedings of 22nd European Cosmic Ray Symposium, 3-6 August 2010, Finlan

    Coherent Radiation from Extensive Air Showers in the Ultra-High Frequency Band

    Full text link
    Using detailed Monte Carlo simulations we have characterized the features of the radio emission of inclined air showers in the Ultra-High Frequency band (300 MHz - 3 GHz). The Fourier-spectrum of the radiation is shown to have a sizable intensity well into the GHz frequency range. The emission is mainly due to transverse currents induced by the geomagnetic field and to the excess charge produced by the Askaryan effect. At these frequencies only a significantly reduced volume of the shower around the axis contributes coherently to the signal observed on the ground. The size of the coherently emitting volume depends on frequency, shower geometry and observer position, and is interpreted in terms of the relative time delays. At ground level, the maximum emission at high frequencies is concentrated in an elliptical ring-like region around the intersection of a Cherenkov cone with its vertex at shower maximum and the ground. The frequency spectrum of inclined showers when observed at positions that view shower maximum in the Cherenkov direction, is shown to be in broad agreement with the pulses detected by the Antarctic Impulsive Transient Antenna (ANITA) experiment, making the interpretation that they are due to Ultra-High Energy Cosmic Ray atmospheric showers consistent with our simulations. These results are also of great importance for experiments aiming to detect molecular bremsstrahlung radiation in the GHz range as they present an important background for its detection.Comment: 8 pages, 8 figure

    Polarized radio emission from extensive air showers measured with LOFAR

    Get PDF
    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%99\%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for 163163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3±1.0)%(3.3\pm 1.0)\% for very inclined air showers at 25m25\, \mathrm{m} to (20.3±1.3)%(20.3\pm 1.3)\% for almost vertical showers at 225m225\, \mathrm{m}. Both dependencies are in qualitative agreement with theoretical predictions.Comment: 22 pages, 14 figures, accepted for publication in JCA

    The radio emission pattern of air showers as measured with LOFAR - a tool for the reconstruction of the energy and the shower maximum

    Get PDF
    The pattern of the radio emission of air showers is finely sampled with the Low-Frequency ARray (LOFAR). A set of 382 measured air showers is used to test a fast, analytic parameterization of the distribution of pulse powers. Using this parameterization we are able to reconstruct the shower axis and give estimators for the energy of the air shower as well as the distance to the shower maximum.Comment: 15 pages, 10 figures, accepted for publication in JCA

    Cosmic Ray Physics with the LOFAR Radio Telescope

    Full text link
    The LOFAR radio telescope is able to measure the radio emission from cosmic ray induced air showers with hundreds of individual antennas. This allows for precision testing of the emission mechanisms for the radio signal as well as determination of the depth of shower maximum XmaxX_{\max}, the shower observable most sensitive to the mass of the primary cosmic ray, to better than 20 g/cm2^2. With a densely instrumented circular area of roughly 320 m2^2, LOFAR is targeting for cosmic ray astrophysics in the energy range 101610^{16} - 101810^{18} eV. In this contribution we give an overview of the status, recent results, and future plans of cosmic ray detection with the LOFAR radio telescope.Comment: Proceedings of the 26th Extended European Cosmic Ray Symposium (ECRS), Barnaul/Belokurikha, 201

    A simple method for determination of fine resolution urban form patterns with distinct thermal properties using class-level landscape metrics

    Get PDF
    Context Relationships between land surface temperature (LST) and spatial configuration of urban form described by landscape metrics so far have been investigated with coarse resolution LST imagery within artificially superimposed land divisions. Citywide micro-scale observations are needed to better inform urban design and help mitigate urban heat island effects in warming climates. Objectives The primary objective was to sub-divide an existing high-resolution land cover (LC) map into groups of patches with distinct spatial and thermal properties suitable for urban LST studies relevant to micro-scales. The secondary objective was to provide insights into the optimal analytical unit size to calculate class-level landscape metrics strongly correlated with LST at 2 m spatial resolution. Methods A two-tiered unsupervised k-means clustering analysis was deployed to derive spatially distinct groups of patches of each major LC class followed by further subdivisions into hottest, coldest and intermediary sub-classes, making use of high resolution class-level landscape metrics strongly correlated with LST. Results Aggregation class-level landscape metrics were consistently correlated with LST for green and grey LC classes and the optimal search window size for their calculations was 100 m for LST at 2 m resolution. ANOVA indicated that all Tier 1 and most of Tier 2 subdivisions were thermally and spatially different. Conclusions The two-tiered k-means clustering approach was successful at depicting subdivisions of major LC classes with distinct spatial configuration and thermal properties, especially at a broader Tier 1 level. Further research into spatial configuration of LC patches with similar spatial but different thermal properties is required

    Realtime processing of LOFAR data for the detection of nano-second pulses from the Moon

    Get PDF
    The low flux of the ultra-high energy cosmic rays (UHECR) at the highest energies provides a challenge to answer the long standing question about their origin and nature. Even lower fluxes of neutrinos with energies above 102210^{22} eV are predicted in certain Grand-Unifying-Theories (GUTs) and e.g.\ models for super-heavy dark matter (SHDM). The significant increase in detector volume required to detect these particles can be achieved by searching for the nano-second radio pulses that are emitted when a particle interacts in Earth's moon with current and future radio telescopes. In this contribution we present the design of an online analysis and trigger pipeline for the detection of nano-second pulses with the LOFAR radio telescope. The most important steps of the processing pipeline are digital focusing of the antennas towards the Moon, correction of the signal for ionospheric dispersion, and synthesis of the time-domain signal from the polyphased-filtered signal in frequency domain. The implementation of the pipeline on a GPU/CPU cluster will be discussed together with the computing performance of the prototype.Comment: Proceedings of the 22nd International Conference on Computing in High Energy and Nuclear Physics (CHEP2016), US

    Ecological connectivity networks in rapidly expanding cities

    Get PDF
    Urban expansion increases fragmentation of the landscape. In effect, fragmentation decreases connectivity, causes green space loss and impacts upon the ecology and function of green space. Restoration of the functionality of green space often requires restoring the ecological connectivity of this green space within the city matrix. However, identifying ecological corridors that integrate different structural and functional connectivity of green space remains vague. Assessing connectivity for developing an ecological network by using efficient models is essential to improve these networks under rapid urban expansion. This paper presents a novel methodological approach to assess and model connectivity for the Eurasian tree sparrow (Passer montanus) and Yellow-vented bulbul (Pycnonotus goiavier) in three cities (Kuala Lumpur, Malaysia; Jakarta, Indonesia and Metro Manila, Philippines). The approach identifies potential priority corridors for ecological connectivity networks. The study combined circuit models, connectivity analysis and least-cost models to identify potential corridors by integrating structure and function of green space patches to provide reliable ecological connectivity network models in the cities. Relevant parameters such as landscape resistance and green space structure (vegetation density, patch size and patch distance) were derived from an expert and literature-based approach based on the preference of bird behaviour. The integrated models allowed the assessment of connectivity for both species using different measures of green space structure revealing the potential corridors and least-cost pathways for both bird species at the patch sites. The implementation of improvements to the identified corridors could increase the connectivity of green space. This study provides examples of how combining models can contribute to the improvement of ecological networks in rapidly expanding cities and demonstrates the usefulness of such models for biodiversity conservation and urban planning
    corecore