16,192 research outputs found
Press forming a 0/90 cross-ply advanced thermoplastic composite using the double-dome benchmark geometry
A pre-consolidated thermoplastic advanced composite cross-ply sheet comprised of two uniaxial plies orientated at 0/90° has been thermoformed using tooling based on the double-dome bench-mark geometry. Mitigation of wrinkling was achieved using springs to apply tension to the forming sheet rather than using a friction-based blank-holder. The shear angle across the surface of the formed geometry has been measured and compared with data collected previously from experiments on woven engineering fabrics. The shear behaviour of the material has been characterised as a function of rate and temperature using the picture frame shear test technique. Multi-scale modelling predictions of the material’s shear behaviour have been incorporated in finite element forming predictions; the latter are compared against the experimental results
Orbit Representations from Linear mod 1 Transformations
We show that every point carries a representation of a
-algebra that encodes the orbit structure of the linear mod 1 interval map
. Such -algebra is generated by
partial isometries arising from the subintervals of monotonicity of the
underlying map . Then we prove that such representation is
irreducible. Moreover two such of representations are unitarily equivalent if
and only if the points belong to the same generalized orbit, for every
and
Complexity in forecasting and predictive models
Te challenge of this special issue has been to know the
state of the problem related to forecasting modeling and
the creation of a model to forecast the future behavior
that supports decision making by supporting real-world applications.
Tis issue has been highlighted by the quality of its
research work on the critical importance of advanced analytical methods, such as neural networks, sof computing,
evolutionary algorithms, chaotic models, cellular automata,
agent-based models, and fnite mixture minimum squares
(FIMIX-PLS).info:eu-repo/semantics/publishedVersio
Orbits and masses in the young triple system TWA 5
We aim to improve the orbital elements and determine the individual masses of
the components in the triple system TWA 5.
Five new relative astrometric positions in the H band were recorded with the
adaptive optics system at the Very Large Telescope (VLT). We combine them with
data from the literature and a measurement in the Ks band. We derive an
improved fit for the orbit of TWA 5Aa-b around each other. Furthermore, we use
the third component, TWA 5B, as an astrometric reference to determine the
motion of Aa and Ab around their center of mass and compute their mass ratio.
We find an orbital period of 6.03+/-0.01 years and a semi-major axis of
63.7+/-0.2 mas (3.2+/-0.1 AU). With the trigonometric distance of 50.1+/-1.8
pc, this yields a system mass of 0.9+/-0.1 Msun, where the error is dominated
by the error of the distance. The dynamical mass agrees with the system mass
predicted by a number of theoretical models if we assume that TWA5 is at the
young end of the age range of the TW Hydrae association.
We find a mass ratio of M_Ab / M_Aa = 1.3 +0.6/-0.4, where the less luminous
component Ab is more massive. This result is likely to be a consequence of the
large uncertainties due to the limited orbital coverage of the observations.Comment: 9 pages, 8 figures, accepted by Astronomy and Astrophysic
- …