12,785 research outputs found

    Complete determination of the orbital parameters of a system with N+1 bodies using a simple Fourier analysis of the data

    Full text link
    Here we show how to determine the orbital parameters of a system composed of a star and N companions (that can be planets, brown-dwarfs or other stars), using a simple Fourier analysis of the radial velocity data of the star. This method supposes that all objects in the system follow keplerian orbits around the star and gives better results for a large number of observational points. The orbital parameters may present some errors, but they are an excellent starting point for the traditional minimization methods such as the Levenberg-Marquardt algorithms.Comment: 4 page

    HD60532, a planetary system in a 3:1 mean motion resonance

    Full text link
    In a recent paper it was reported a planetary system around the star HD60532, composed by two giant planets in a possible 3:1 mean motion resonance, that should be confirmed within the next decade. Here we show that the analysis of the global dynamics of the system allows to confirm this resonance. The present best fit to data already corresponds to this resonant configuration and the system is stable for at least 5Gry. The 3:1 resonance is so robust that stability is still possible for a wide variety of orbital parameters around the best fit solution and also if the inclination of the system orbital plane with respect to the plane of the sky is as small as 15 deg. Moreover, if the inclination is taken as a free parameter in the adjustment to the observations, we find an inclination ~ 20 deg, which corresponds to M_b =3.1 M_Jup and M_c = 7.4 M_Jup for the planetary companions.Comment: 4 Pages, 4 Figures, accepted by A&

    Anisotropic simplicial minisuperspace model

    Get PDF
    The computation of the simplicial minisuperspace wavefunction in the case of anisotropic universes with a scalar matter field predicts the existence of a large classical Lorentzian universe like our own at late timesComment: 19 pages, Latex, 6 figure

    Tidal Evolution of Exoplanets

    Full text link
    Tidal effects arise from differential and inelastic deformation of a planet by a perturbing body. The continuous action of tides modify the rotation of the planet together with its orbit until an equilibrium situation is reached. It is often believed that synchronous motion is the most probable outcome of the tidal evolution process, since synchronous rotation is observed for the majority of the satellites in the Solar System. However, in the 19th century, Schiaparelli also assumed synchronous motion for the rotations of Mercury and Venus, and was later shown to be wrong. Rather, for planets in eccentric orbits synchronous rotation is very unlikely. The rotation period and axial tilt of exoplanets is still unknown, but a large number of planets have been detected close to the parent star and should have evolved to a final equilibrium situation. Therefore, based on the Solar System well studied cases, we can make some predictions for exoplanets. Here we describe in detail the main tidal effects that modify the secular evolution of the spin and the orbit of a planet. We then apply our knowledge acquired from Solar System situations to exoplanet cases. In particular, we will focus on two classes of planets, "Hot-Jupiters" (fluid) and "Super-Earths" (rocky with atmosphere).Comment: 30 pages, 19 figures. Chapter in Exoplanets, ed. S. Seager, to be published by University of Arizona Pres

    Stellar wobble caused by a nearby binary system: eccentric and inclined orbits

    Full text link
    Most extrasolar planets currently known were discovered by means of an indirect method that measures the stellar wobble caused by the planet. We previously studied a triple system composed of a star and a nearby binary on circular coplanar orbits. We showed that although the effect of the binary on the star can be differentiated from the stellar wobble caused by a planet, because of observational limitations the two effects may often remain indistinguishable. Here, we develop a model that applies to eccentric and inclined orbits. We show that the binary's effect is more likely to be mistaken by planet(s) in the case of coplanar motion observed equator-on. Moreover, when the orbits are eccentric, the magnitude of the binary's effect may be larger than in the circular case. Additionally, an eccentric binary can mimic two planets with orbital periods in the ratio 2/1. However, when the star's orbit around the binary's center of mass has a high eccentricity and a reasonably well-constrained period, it should be easier to distinguish the binary's effect from a planet.Comment: 10 pages, 9 figures, 2 table

    Spin-orbit coupling and chaotic rotation for coorbital bodies in quasi-circular orbits

    Full text link
    Coorbital bodies are observed around the Sun sharing their orbits with the planets, but also in some pairs of satellites around Saturn. The existence of coorbital planets around other stars has also been proposed. For close-in planets and satellites, the rotation slowly evolves due to dissipative tidal effects until some kind of equilibrium is reached. When the orbits are nearly circular, the rotation period is believed to always end synchronous with the orbital period. Here we demonstrate that for coorbital bodies in quasi-circular orbits, stable non-synchronous rotation is possible for a wide range of mass ratios and body shapes. We show the existence of an entirely new family of spin-orbit resonances at the frequencies n±kν/2n\pm k\nu/2, where nn is the orbital mean motion, ν\nu the orbital libration frequency, and kk an integer. In addition, when the natural rotational libration frequency due to the axial asymmetry, σ\sigma, has the same magnitude as ν\nu, the rotation becomes chaotic. Saturn coorbital satellites are synchronous since νσ\nu\ll\sigma, but coorbital exoplanets may present non-synchronous or chaotic rotation. Our results prove that the spin dynamics of a body cannot be dissociated from its orbital environment. We further anticipate that a similar mechanism may affect the rotation of bodies in any mean-motion resonance.Comment: 6 pages. Astrophysical Journal (2013) 6p

    A semi-empirical stability criterion for real planetary systems

    Full text link
    We test a crossing orbit stability criterion for eccentric planetary systems, based on Wisdom's criterion of first order mean motion resonance overlap (Wisdom, 1980). We show that this criterion fits the stability regions in real exoplanet systems quite well. In addition, we show that elliptical orbits can remain stable even for regions where the apocenter distance of the inner orbit is larger than the pericenter distance of the outer orbit, as long as the initial orbits are aligned. The analytical expressions provided here can be used to put rapid constraints on the stability zones of multi-planetary systems. As a byproduct of this research, we further show that the amplitude variations of the eccentricity can be used as a fast-computing stability indicator.Comment: 11 pages, 11 figures. MNRAS accepte

    On the equilibrium rotation of Earth-like extra-solar planets

    Full text link
    The equilibrium rotation of tidally evolved "Earth-like" extra-solar planets is often assumed to be synchronous with their orbital mean motion. The same assumption persisted for Mercury and Venus until radar observations revealed their true spin rates. As many of these planets follow eccentric orbits and are believed to host dense atmospheres, we expect the equilibrium rotation to differ from the synchronous motion. Here we provide a general description of the allowed final equilibrium rotation states of these planets, and apply this to already discovered cases in which the mass is lower than twelve Earth-masses. At low obliquity and moderate eccentricity, it is shown that there are at most four distinct equilibrium possibilities, one of which can be retrograde. Because most presently known "Earth-like" planets present eccentric orbits, their equilibrium rotation is unlikely to be synchronous.Comment: 4 pages, 2 figures. accepted for publication in Astronomy and Astrophysics. to be published in Astronomy and Astrophysic
    corecore