Coorbital bodies are observed around the Sun sharing their orbits with the
planets, but also in some pairs of satellites around Saturn. The existence of
coorbital planets around other stars has also been proposed. For close-in
planets and satellites, the rotation slowly evolves due to dissipative tidal
effects until some kind of equilibrium is reached. When the orbits are nearly
circular, the rotation period is believed to always end synchronous with the
orbital period. Here we demonstrate that for coorbital bodies in quasi-circular
orbits, stable non-synchronous rotation is possible for a wide range of mass
ratios and body shapes. We show the existence of an entirely new family of
spin-orbit resonances at the frequencies n±kν/2, where n is the
orbital mean motion, ν the orbital libration frequency, and k an integer.
In addition, when the natural rotational libration frequency due to the axial
asymmetry, σ, has the same magnitude as ν, the rotation becomes
chaotic. Saturn coorbital satellites are synchronous since ν≪σ, but
coorbital exoplanets may present non-synchronous or chaotic rotation. Our
results prove that the spin dynamics of a body cannot be dissociated from its
orbital environment. We further anticipate that a similar mechanism may affect
the rotation of bodies in any mean-motion resonance.Comment: 6 pages. Astrophysical Journal (2013) 6p