19,186 research outputs found
HD60532, a planetary system in a 3:1 mean motion resonance
In a recent paper it was reported a planetary system around the star HD60532,
composed by two giant planets in a possible 3:1 mean motion resonance, that
should be confirmed within the next decade. Here we show that the analysis of
the global dynamics of the system allows to confirm this resonance. The present
best fit to data already corresponds to this resonant configuration and the
system is stable for at least 5Gry. The 3:1 resonance is so robust that
stability is still possible for a wide variety of orbital parameters around the
best fit solution and also if the inclination of the system orbital plane with
respect to the plane of the sky is as small as 15 deg. Moreover, if the
inclination is taken as a free parameter in the adjustment to the observations,
we find an inclination ~ 20 deg, which corresponds to M_b =3.1 M_Jup and M_c =
7.4 M_Jup for the planetary companions.Comment: 4 Pages, 4 Figures, accepted by A&
On the equilibrium rotation of Earth-like extra-solar planets
The equilibrium rotation of tidally evolved "Earth-like" extra-solar planets
is often assumed to be synchronous with their orbital mean motion. The same
assumption persisted for Mercury and Venus until radar observations revealed
their true spin rates. As many of these planets follow eccentric orbits and are
believed to host dense atmospheres, we expect the equilibrium rotation to
differ from the synchronous motion. Here we provide a general description of
the allowed final equilibrium rotation states of these planets, and apply this
to already discovered cases in which the mass is lower than twelve
Earth-masses. At low obliquity and moderate eccentricity, it is shown that
there are at most four distinct equilibrium possibilities, one of which can be
retrograde. Because most presently known "Earth-like" planets present eccentric
orbits, their equilibrium rotation is unlikely to be synchronous.Comment: 4 pages, 2 figures. accepted for publication in Astronomy and
Astrophysics. to be published in Astronomy and Astrophysic
Nash Equilibria in the Response Strategy of Correlated Games
In nature and society problems arise when different interests are difficult
to reconcile, which are modeled in game theory. While most applications assume
uncorrelated games, a more detailed modeling is necessary to consider the
correlations that influence the decisions of the players. The current theory
for correlated games, however, enforces the players to obey the instructions
from a third party or "correlation device" to reach equilibrium, but this
cannot be achieved for all initial correlations. We extend here the existing
framework of correlated games and find that there are other interesting and
previously unknown Nash equilibria that make use of correlations to obtain the
best payoff. This is achieved by allowing the players the freedom to follow or
not to follow the suggestions of the correlation device. By assigning
independent probabilities to follow every possible suggestion, the players
engage in a response game that turns out to have a rich structure of Nash
equilibria that goes beyond the correlated equilibrium and mixed-strategy
solutions. We determine the Nash equilibria for all possible correlated
Snowdrift games, which we find to be describable by Ising Models in thermal
equilibrium. We believe that our approach paves the way to a study of
correlations in games that uncovers the existence of interesting underlying
interaction mechanisms, without compromising the independence of the players
Stellar wobble caused by a nearby binary system: eccentric and inclined orbits
Most extrasolar planets currently known were discovered by means of an
indirect method that measures the stellar wobble caused by the planet. We
previously studied a triple system composed of a star and a nearby binary on
circular coplanar orbits. We showed that although the effect of the binary on
the star can be differentiated from the stellar wobble caused by a planet,
because of observational limitations the two effects may often remain
indistinguishable. Here, we develop a model that applies to eccentric and
inclined orbits. We show that the binary's effect is more likely to be mistaken
by planet(s) in the case of coplanar motion observed equator-on. Moreover, when
the orbits are eccentric, the magnitude of the binary's effect may be larger
than in the circular case. Additionally, an eccentric binary can mimic two
planets with orbital periods in the ratio 2/1. However, when the star's orbit
around the binary's center of mass has a high eccentricity and a reasonably
well-constrained period, it should be easier to distinguish the binary's effect
from a planet.Comment: 10 pages, 9 figures, 2 table
Spin-orbit resonances and rotation of coorbital bodies in quasi-circular orbits
The rotation of asymmetric bodies in eccentric Keplerian orbits can be
chaotic when there is some overlap of spin-orbit resonances. Here we show that
the rotation of two coorbital bodies (two planets orbiting a star or two
satellites of a planet) can also be chaotic even for quasi-circular orbits
around the central body. When dissipation is present, the rotation period of a
body on a nearly circular orbit is believed to always end synchronous with the
orbital period. Here we demonstrate that for coorbital bodies in quasi-circular
orbits, stable non-synchronous rotation is possible for a wide range of mass
ratios and body shapes. We further show that the rotation becomes chaotic when
the natural rotational libration frequency, due to the axial asymmetry, is of
the same order of magnitude as the orbital libration frequency
Resource design in constrained networks for network lifetime increase
As constrained "things" become increasingly integrated with the Internet and accessible for interactive communication, energy efficient ways to collect, aggregate, and share data over such constrained networks are needed. In this paper, we propose the use of constrained RESTful environments interfaces to build resource collections having a network lifetime increase in mind. More specifically, based on existing atomic resources, collections are created/designed to become available as new resources, which can be observed. Such resource design should not only match client's interests, but also increase network lifetime as much as possible. For this to happen, energy consumption should be balanced/fair among nodes so that node depletion is delayed. When compared with previous approaches, results show that energy efficiency and network lifetime can be increased while reducing control/registration messages, which are used to set up or change observations
- …