4,609 research outputs found

    On Self-Organized Criticality and Synchronization in Lattice Models of Coupled Dynamical Systems

    Full text link
    Lattice models of coupled dynamical systems lead to a variety of complex behaviors. Between the individual motion of independent units and the collective behavior of members of a population evolving synchronously, there exist more complicated attractors. In some cases, these states are identified with self-organized critical phenomena. In other situations, with clusterization or phase-locking. The conditions leading to such different behaviors in models of integrate-and-fire oscillators and stick-slip processes are reviewed.Comment: 41 pages. Plain LaTeX. Style included in main file. To appear as an invited review in Int. J. Modern Physics B. Needs eps

    The XMM-Newton spectral-fit database

    Full text link
    The XMM-Newton spectral-fit database is an ongoing ESA funded project aimed to construct a catalogue of spectral-fitting results for all the sources within the XMM-Newton serendipitous source catalogue for which spectral data products have been pipeline-extracted (~ 120,000 X-ray source detections). The fundamental goal of this project is to provide the astronomical community with a tool to construct large and representative samples of X-ray sources by allowing source selection according to spectral properties.Comment: Conference proceedings of IAU Symposium 304: Multiwavelength AGN surveys and studie

    Acoustic Emission Monitoring of the Syracuse Athena Temple: Scale Invariance in the Timing of Ruptures

    No full text
    We perform a comparative statistical analysis between the acoustic-emission time series from the ancient Greek Athena temple in Syracuse and the sequence of nearby earthquakes. We find an apparent association between acoustic-emission bursts and the earthquake occurrence. The waiting-time distributions for acoustic-emission and earthquake time series are described by a unique scaling law indicating self-similarity over a wide range of magnitude scales. This evidence suggests a correlation between the aging process of the temple and the local seismic activit

    Universality of rain event size distributions

    Full text link
    We compare rain event size distributions derived from measurements in climatically different regions, which we find to be well approximated by power laws of similar exponents over broad ranges. Differences can be seen in the large-scale cutoffs of the distributions. Event duration distributions suggest that the scale-free aspects are related to the absence of characteristic scales in the meteorological mesoscale.Comment: 16 pages, 10 figure

    Point-occurrence self-similarity in crackling-noise systems and in other complex systems

    Full text link
    It has been recently found that a number of systems displaying crackling noise also show a remarkable behavior regarding the temporal occurrence of successive events versus their size: a scaling law for the probability distributions of waiting times as a function of a minimum size is fulfilled, signaling the existence on those systems of self-similarity in time-size. This property is also present in some non-crackling systems. Here, the uncommon character of the scaling law is illustrated with simple marked renewal processes, built by definition with no correlations. Whereas processes with a finite mean waiting time do not fulfill a scaling law in general and tend towards a Poisson process in the limit of very high sizes, processes without a finite mean tend to another class of distributions, characterized by double power-law waiting-time densities. This is somehow reminiscent of the generalized central limit theorem. A model with short-range correlations is not able to escape from the attraction of those limit distributions. A discussion on open problems in the modeling of these properties is provided.Comment: Submitted to J. Stat. Mech. for the proceedings of UPON 2008 (Lyon), topic: crackling nois

    A Markov chain model to investigate the spread of antibiotic-resistant bacteria in hospitals

    Full text link
    Ordinary differential equation (ODE) models used in mathematical epidemiology assume explicitly or implicitly large populations. For the study of infections in a hospital this is an extremely restrictive assumption as typically a hospital ward has a few dozen, or even fewer, patients. This work reframes a well-known model used in the study of the spread of antibiotic-resistant bacteria in hospitals, to consider the pathogen transmission dynamics in small populations. In this vein, this paper proposes a Markov chain model to describe the spread of a single bacterial species in a hospital ward where patients may be free of bacteria or may carry bacterial strains that are either sensitive or resistant to antimicrobial agents. We determine the probability law of the \emph{exact} reproduction number Rexact,0{\cal R}_{exact,0}, which is here defined as the random number of secondary infections generated by those patients who are accommodated in a predetermined bed before a patient who is free of bacteria is accommodated in this bed for the first time. Specifically, we decompose the exact reproduction number Rexact,0{\cal R}_{exact,0} into two contributions allowing us to distinguish between infections due to the sensitive and the resistant bacterial strains. Our methodology is mainly based on structured Markov chains and the use of related matrix-analytic methods. This guarantees the compatibility of the new, finite-population model, with large population models present in the literature and takes full advantage, in its mathematical analysis, of the intrinsic stochasticity.Comment: 30 pages, 9 figure

    Searching for highly obscured AGN in the XMM-Newton serendipitous source catalog

    Full text link
    The majority of active galactic nuclei (AGN) are obscured by large amounts of absorbing material that makes them invisible at many wavelengths. X-rays, given their penetrating power, provide the most secure way for finding these AGN. The XMM-Newton serendipitous source catalog is the largest catalog of X-ray sources ever produced; it contains about half a million detections. These sources are mostly AGN. We have derived X-ray spectral fits for very many 3XMM-DR4 sources (\gtrsim 114 000 observations, corresponding to \sim 77 000 unique sources), which contain more than 50 source photons per detector. Here, we use a subsample of \simeq 1000 AGN in the footprint of the SDSS area (covering 120 deg2^2) with available spectroscopic redshifts. We searched for highly obscured AGN by applying an automated selection technique based on X-ray spectral analysis that is capable of efficiently selecting AGN. The selection is based on the presence of either a) flat rest-frame spectra; b) flat observed spectra; c) an absorption turnover, indicative of a high rest-frame column density; or d) an Fe Kα\alpha line with an equivalent width > 500 eV. We found 81 highly obscured candidate sources. Subsequent detailed manual spectral fits revealed that 28 of them are heavily absorbed by column densities higher than 1023^{23} cm2^{-2}. Of these 28 AGN, 15 are candidate Compton-thick AGN on the basis of either a high column density, consistent within the 90% confidence level with NH_{\rm H} >>1024^{24} cm2^{-2}, or a large equivalent width (>500 eV) of the Fe Kα\alpha line. Another six are associated with near-Compton-thick AGN with column densities of \sim 5×\times1023^{23} cm2^{-2}. A combination of selection criteria a) and c) for low-quality spectra, and a) and d) for medium- to high-quality spectra, pinpoint highly absorbed AGN with an efficiency of 80%.Comment: 18 pages, 10 figures, accepted for publication in A&
    corecore