7,160 research outputs found

    Kinematic and morphological modeling of the bipolar nebula Sa2-237

    Full text link
    We present [OIII]500.7nm and Halpha+[NII] images and long-slit, high resolution echelle spectra in the same spectral regions of Sa2--237, a possible bipolar planetary nebula. The image shows a bipolar nebula of about 34" extent, with a narrow waist, and showing strong point symmetry about the central object, indicating it's likely binary nature. The long slit spectra were taken over the long axis of the nebula, and show a distinct ``eight'' shaped pattern in the velocity--space plot, and a maximum projected outflow velocity of V=106km/s, both typical of expanding bipolar planetary nebulae. By model fitting the shape and spectrum of the nebula simultaneously, we derive the inclination of the long axis to be 70 degrees, and the maximum space velocity of expansion to be 308 km/s. Due to asymmetries in the velocities we adopt a new value for the system's heliocentric radial velocity of -30km/s. We use the IRAS and 21cm radio fluxes, the energy distribution, and the projected size of Sa2-237 to estimate it's distance to be 2.1+-0.37kpc. At this distance Sa2-237 has a luminosity of 340 Lsun, a size of 0.37pc, and -- assuming constant expansion velocity -- a nebular age of 624 years. The above radial velocity and distance place Sa2--237 in the disk of the Galaxy at z=255pc, albeit with somewhat peculiar kinematics.Comment: 10pp, 4 fig

    High-velocity collimated outflows in planetary nebulae: NGC 6337, He 2-186, and K 4-47

    Full text link
    We have obtained narrow-band images and high-resolution spectra of the planetary nebulae NGC 6337, He 2-186, and K 4-47, with the aim of investigating the relation between their main morphological components and several low-ionization features present in these nebulae. The data suggest that NGC 6337 is a bipolar PN seen almost pole on, with polar velocities higher than 200 km/s. The bright inner ring of the nebula is interpreted to be the "equatorial" density enhancement. It contains a number of low-ionization knots and outward tails that we ascribe to dynamical instabilities leading to fragmentation of the ring or transient density enhancements due to the interaction of the ionization front with previous density fluctuations in the ISM. The lobes show a pronounced point-symmetric morphology and two peculiar low-ionization filaments whose nature remains unclear. The most notable characteristic of He 2-186 is the presence of two high-velocity (higher than 135 km/s) knots from which an S-shaped lane of emission departs toward the central star. K 4-47 is composed of a compact core and two high-velocity, low-ionization blobs. We interpret the substantial broadening of line emission from the blobs as a signature of bow shocks, and using the modeling of Hartigan, Raymond, & Hartman (1987), we derive a shock velocity of 150 km/s and a mild inclination of the outflow on the plane of the sky. We discuss possible scenarios for the formation of these nebulae and their low-ionization features. In particular, the morphology of K 4-47 hardly fits into any of the usually adopted mass-loss geometries for single AGB stars. Finally, we discuss the possibility that point-symmetric morphologies in the lobes of NGC 6337 and the knots of He 2-186 are the result of precessing outflows from the central stars.Comment: 16 pages plus 7 figures, ApJ accepted. Also available at http://www.iac.es/publicaciones/preprints.htm

    Teaching about Madrid: A Collaborative Agents-Based Distributed Learning Course

    Get PDF
    Interactive art courses require a huge amount of computational resources to be running on real time. These computational resources are even bigger if the course has been designed as a Virtual Environment with which students can interact. In this paper, we present an initiative that has been develop in a close collaboration between two Spanish Universities: Universidad Politécnica de Madrid and Universidad Rey Juan Carlos with the aim of join two previous research project: a Collaborative Awareness Model for Task-Balancing-Delivery (CAMT) in clusters and the “Teaching about Madrid” course, which provides a cultural interactive background of the capital of Spain

    Absolute Spectrophotometry of Northern Compact Planetary Nebulae

    Full text link
    We present medium-dispersion spectra and narrowband images of six northern compact planetary nebulae (PNe): BoBn 1, DdDm 1, IC 5117, M 1-5, M 1-71, and NGC 6833. From broad-slit spectra, total absolute fluxes and equivalent widths were measured for all observable emission lines. High signal-to noise emission line fluxes of H-alpha, H-beta, [OIII], [NII], and HeI may serve as emission line flux standards for northern hemisphere observers. From narrow-slit spectra, we derive systemic radial velocities. For four PNe, available emission line fluxes were measured with sufficient signal-to-noise to probe the physical properties of their electron densities, temperatures, and chemical abundances. BoBn 1 and DdDm 1, both type IV PNe, have an H-beta flux over three sigma away from previous measurements. We report the first abundance measurements of M 1-71. NGC 6833 measured radial velocity and galactic coordinates suggest that it is associated with the outer arm or possibly the galactic halo, and its low abundance ([O/H]=1.3x10E-4) may be indicative of low metallicity within that region.Comment: 9 pages, 1 figure, accepted in A&A (03/14/2005

    Knots in the outer shells of the planetary nebulae IC 2553 and NGC 5882

    Get PDF
    We present images and high-resolution spectra of the planetary nebulae IC 2553 and NGC 5882. Spatio-kinematic modeling of the nebulae shows that they are composed of a markedly elongated inner shell, and of a less aspherical outer shell expanding at a considerably higher velocity than the inner one. Embedded in the outer shells of both nebulae are found several low-ionization knots. In IC 2553, the knots show a point-symmetric distribution with respect to the central star: one possible explanation for their formation is that they are the survivors of pre-existing point-symmetric condensations in the AGB wind, a fact which would imply a quite peculiar mass-loss geometry from the giant progenitor. In the case of NGC 5882, the lack of symmetry in the distribution of the observed low-ionization structures makes it possible that they are the result of in situ instabilities.Comment: 20 pages including 1 table and 6 figures. ApJ accepted. Also available at http://andromeda.roque.ing.iac.es/~sanchez/ingpub/index2000.htm

    QCALT: a tile calorimeter for KLOE-2 upgrade

    Full text link
    The upgrade of the DAΦ\PhiNE machine layout requires a modification of the size and position of the inner focusing quadrupoles of KLOE-2 thus asking for the realization of two new calorimeters covering the quadrupoles area. To improve the reconstruction of KL→2π0K_L\to 2\pi^0 events with photons hitting the quadrupoles a calorimeter with high efficiency to low energy photons (20-300 MeV), time resolution of less than 1 ns and space resolution of few cm, is needed. To match these requirements, we are designing a tile calorimeter, QCALT, where each single tile is readout by mean of SiPM for a total granularity of 2400 channels. We show first tests of the different calorimeter components

    The physical parameters, excitation and chemistry of the rim, jets and knots of the planetary nebula NGC 7009

    Get PDF
    We present long-slit optical spectra along the major axis of the planetary nebula NGC 7009. These data allow us to discuss the physical, excitation and chemical properties of all the morphological components of the nebula, including its remarkable systems of knots and jets. The main results of this analysis are the following: i) the electron temperature throughout the nebula is remarkably constant, T_e[OIII] = 10200K; ii) the bright inner rim and inner pair of knots have similar densities of N_e = 6000cm^{-3}, whereas a much lower density of N_e = 1500cm^{-3} is derived for the outer knots as well as for the jets; iii) all the regions (rim, inner knots, jets and outer knots) are mainly radiatively excited; and iv) there are no clear abundance changes across the nebula for He, O, Ne, or S. There is a marginal evidence for an overabundance of nitrogen in the outer knots (ansae), but the inner ones (caps) and the rim have similar N/H values that are at variance with previous results. Our data are compared to the predictions of theoretical models, from which we conclude that the knots at the head of the jets are not matter accumulated during the jet expansion through the circumstellar medium, neither can their origin be explained by the proposed HD or MHD interacting-wind models for the formation of jets/ansae, since the densities as well as the main excitation mechanisms of the knots, disagree with model predictions.Comment: Figure 1 was changed because features were misidentified in the previous version. 17 pages including 5 figures and 3 tables. ApJ in press. Also available at http://www.iac.es/galeria/denise

    A Possible Hidden Population of Spherical Planetary Nebulae

    Full text link
    We argue that relative to non-spherical planetary nebulae (PNs), spherical PNs are about an order of magnitude less likely to be detected, at distances of several kiloparsecs. Noting the structure similarity of halos around non-spherical PNs to that of observed spherical PNs, we assume that most unobserved spherical PNs are also similar in structure to the spherical halos around non-spherical PNs. The fraction of non-spherical PNs with detected spherical halos around them, taken from a recent study, leads us to the claim of a large (relative to that of non-spherical PNs) hidden population of spherical PNs in the visible band. Building a toy model for the luminosity evolution of PNs, we show that the claimed detection fraction of spherical PNs based on halos around non-spherical PNs, is compatible with observational sensitivities. We use this result to update earlier studies on the different PN shaping routes in the binary model. We estimate that ~30% of all PNs are spherical, namely, their progenitors did not interact with any binary companion. This fraction is to be compared with the ~3% fraction of observed spherical PNs among all observed PNs. From all PNs, ~15% owe their moderate elliptical shape to the interaction of their progenitors with planets, while \~55% of all PNs owe their elliptical or bipolar shapes to the interaction of their progenitors with stellar companions.Comment: AJ, in pres
    • …
    corecore