120 research outputs found

    Quantitative-spatial assessment of soil contamination in S. Francisco de Assis due to mining activity of the Panasqueira mine (Portugal)

    Get PDF
    Through the years, mining and beneficiation processes produces large amounts of As-rich mine wastes laid up in huge tailings and open-air impoundments (Barroca Grande and Rio tailings) that are the main source of pollution in the surrounding area once they are exposed to the weathering conditions leading to the formation of AMD and consequently to the contamination of the surrounding environments, in particularly soils. In order to investigate the environmental contamination impact on S. Francisco de Assis (village located between the two major impoundments and tailings) agricultural soils, a geochemical survey was undertaken to assess toxic metals associations, related levels and their spatial distribution, and to identify the possible contamination sources. According to the calculated contamination factor, As and Zn have a very high contamination factor giving rise to 65.4 % of samples with a moderate to high pollution degree; 34.6 % have been classified as nil to very low pollution degree. The contamination factor spatial distribution put in evidence the fact that As, Cd, Cu, Pb, and Zn soils contents, downstream Barroca Grande tailing, are increased when compared with the local Bk soils. The mechanical dispersion, due to erosion, is the main contamination source. The chemical extraction demonstrates that the trace metals distribution and accumulation in S. Francisco de Assis soils is related to sulfides, but also to amorphous or poorly crystalline iron oxide phases. The partitioning study allowed understanding the local chemical elements mobility and precipitation processes, giving rise to the contamination dispersion model of the study area. The wind and hydrological factors are responsible for the chemical elements transport mechanisms, the water being the main transporter medium and soils as one of the possible retention media

    In vitro and in vivo safety evaluation of Dipteryx alata Vogel extract

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Dipteryx alata </it>Vogel popularly known as "baru" is an important commercial leguminous tree species from the Brazilian Cerrado, which possess medicinal properties, besides its fruits consumption by animals and humans. The use of the "naturally occurring plants" as herbal remedies and foods mainly from leaves, seeds, flowers and roots of plants or extracts require precautions before ensuring these are safe and efficacious. The objective of this study was to evaluate the safety of <it>D. alata </it>barks extract.</p> <p>Methods</p> <p>Vegetal drugs of <it>D. alata </it>barks were submitted to quality control assays and further to the safety assays under 1) <it>in vitro </it>parameter by <it>Salmonella </it>(Ames) mutagenicity, and 2) <it>in vivo </it>parameter on the pregnancy of rats.</p> <p>Results</p> <p>The extract was non-mutagenic to any of the assessed strains TA97a, TA98, TA100 and TA102 even after metabolic activation (+S9). All <it>in vivo </it>parameters (reproductive ability evaluation, physical development of rat offsprings, and neurobehavioral development assays) showed no changes related to control group.</p> <p>Conclusion</p> <p><it>D. alata </it>barks extract is neither mutagenic by the Ames test nor toxic in the pregnancy of rats, with no physical-neurobehavioral consequences on the rat offsprings development.</p
    corecore