46 research outputs found

    Association of Bartonella spp bacteremia with Chagas cardiomyopathy, endocarditis and arrythmias in patients from South America

    Get PDF
    Infection with Bartonella spp may cause cardiac arrhythmias, myocarditis and endocarditis in humans. The aim of the present study was to evaluate a possible association between Bartonella spp bacteremia and endocarditis, arrhythmia and Chagas cardiomyopathy in patients from Brazil and Argentina. We screened for the presence of bacterial 16S rRNA in human blood by PCR using oligonucleotides to amplify a 185-bp bacterial DNA fragment. Blood samples were taken from four groups of subjects in Brazil and Argentina: i) control patients without clinical disease, ii) patients with negative blood-culture endocarditis, iii) patients with arrhythmias, and iv) patients with chronic Chagas cardiomyopathy. PCR products were analyzed on 1.5% agarose gel to visualize the 185-bp fragment and then sequenced to confirm the identity of DNA. Sixty of 148 patients (40.5%) with cardiac disease and 1 of 56 subjects (1.8%) from the control group presented positive PCR amplification for Bartonella spp, suggesting a positive association of the bacteria with these diseases. Separate analysis of the four groups showed that the risk of a Brazilian patient with endocarditis being infected with Bartonella was 22 times higher than in the controls. In arrhythmic patients, the prevalence of infection was 45 times higher when compared to the same controls and 40 times higher for patients with Chagas cardiomyopathy. To the best of our knowledge this is the first report of the association between Bartonella spp bacteremia and Chagas disease. The present data may be useful for epidemiological and prevention studies in Brazil and Argentina.64465

    A review of angular leaf spot resistance in common bean.

    Get PDF
    Angular leaf spot (ALS), caused by Pseudocer-cospora griseola, is one of the most devastating diseases of common bean (Phaseolus vulgarisL.) in tropical and subtropical production areas. Breeding for ALS resistance is difficult due to the extensive virulence diversity of P. griseolaand the recurrent appearance of new virulent races. Five major loci, Phg-1 to Phg-5, confer-ring ALS resistance have been named, and markers tightly linked to these loci have been reported. Quantitative trait loci (QTLs) have also been described, but the validation of some QTLs is still pending. The Phg-1, Phg-4, and Phg-5loci are from common bean cultivars of the Andean gene pool, whereas Phg-2 and Phg-3are from beans of the Mesoamerican gene pool. The reference genome of common bean and high-throughput sequencing technologies are enabling the development of molecular markers closely linked to the Phg loci, more accurate mapping of the resistance loci, and the compar-ison of their genomic positions. The objective of this report is to provide a comprehensive review of ALS resistance in common bean. Further-more, we are reporting three case studies of ALS resistance breeding in Latin America and Africa. This review will serve as a reference for future resistance mapping studies and as a guide for the selection of resistance loci in breeding programs aiming to develop common bean cultivars with durable ALS resistance
    corecore