14 research outputs found

    Rapid endocytosis provides restricted somatic expression of a K+ channel in central neurons

    No full text
    Trafficking motifs present in the intracellular regions of ion channels affect their subcellular location within neurons. The mechanisms that control trafficking to dendrites of central neurons have been identified, but it is not fully understood how channels are localized to the soma. We have now identified a motif within the calcium-activated potassium channel K(Ca)2.1 (SK1) that results in somatic localization. Transfection of hippocampal neurons with K(Ca)2.1 subunits causes expression of functional channels in only the soma and proximal processes. By contrast, expressed K(Ca)2.3 subunits are located throughout the processes of transfected neurons. Point mutation of K(Ca)2.1 within this novel motif to mimic a sequence present in the C-terminus of K(Ca)2.3 causes expression of K(Ca)2.1 subunits throughout the processes. We also demonstrate that blocking of clathrin-mediated endocytosis causes K(Ca)2.1 subunit expression to mimic that of the mutated subunit. The role of this novel motif is therefore not to directly target trafficking of the channel to subcellular compartments, but to regulate channel location by subjecting it to rapid clathrin-mediated endocytosis

    Compartmentalization of the MAPK scaffold protein KSR1 modulates synaptic plasticity in hippocampal neurons

    No full text
    ERK1/2 is required for certain forms of synaptic plasticity, including the long-term potentiation of synaptic strength. However, the molecular mechanisms regulating synaptically localized ERK1/2 signaling are poorly understood. Here, we show that the MAPK scaffold protein kinase suppressor of Ras 1 (KSR1) is directly phosphorylated by the downstream kinase ERK1/2. Quantitative Western blot analysis further demonstrates that expression of mutated, feedback-deficient KSR1 promotes sustained ERK1/2 activation in HEK293 cells in response to EGF stimulation, compared to a more transient activation in control cells expressing wild-type KSR1. Immunocytochemistry and confocal imaging of primary hippocampal neurons from newborn C57BL6 mice further show that feedback phosphorylation of KSR1 significantly reduces its localization to dendritic spines. This effect can be reversed by tetrodotoxin (1 ÎŒM) or PD184352 (2 ÎŒM) treatment, further suggesting that neuronal activity and phosphorylation by ERK1/2 lead to KSR1 removal from the postsynaptic compartment. Consequently, electrophysiological recordings in hippocampal neurons expressing wild-type or feedback-deficient KSR1 demonstrate that KSR1 feedback phosphorylation restricts the potentiation of excitatory postsynaptic currents. Our findings, therefore, suggest that feedback phosphorylation of the scaffold protein KSR1 prevents excessive ERK1/2 signaling in the postsynaptic compartment and thus contributes to maintaining physiological levels of synaptic excitability.—Canal, F., Palygin, O., Pankratov, Y., CorrĂȘa, S. A. L., MĂŒller, J. Compartmentalization of the MAPK scaffold protein KSR1 modulates synaptic plasticity in hippocampal neurons

    Co-activation of p38 mitogen-activated protein kinase and protein tyrosine phosphatase underlies metabotropic glutamate receptor-dependent long-term depression

    No full text
    Long-term potentiation (LTP) and long-term depression (LTD) are forms of synaptic plasticity thought to contribute to learning and memory. Much is known about the mechanisms of NMDA receptor-dependent LTD in the CA1 region of rat hippocampus but there is still considerable uncertainty about the mechanisms of LTD induced by mGluR activation (mGluR-LTD). Furthermore, data on mGluR-LTD derives largely from studies using pharmacologically induced LTD. To investigate mGluR-LTD that is more physiologically relevant we have examined, in CA1 of adult rat hippocampus, mechanisms of synaptically induced mGluR-LTD. We provide the first demonstration that activation of protein tyrosine phosphatase (PTP) is essential for the induction of synaptically induced mGluR-LTD. In addition, we show that activation of p38 MAPK is also required for this form of LTD. Furthermore, LTD can be mimicked and occluded by activation of p38 MAPK, provided that protein tyrosine kinases (PTKs) are inhibited. These data therefore demonstrate that a novel combination of signalling cascades, requiring both activation of p38 MAPK and tyrosine de-phosphorylation, underlies the induction of synaptically induced mGluR-LTD

    Arc expression regulates long-term potentiation magnitude and metaplasticity in area CA1 of the hippocampus in ArcKR mice

    No full text
    Expression of the immediate early gene Arc/Arg3.1 (Arc), a key mediator of synaptic plasticity, is enhanced by neural activity and then reduced by proteasome-dependent degradation. We have previously shown that disruption of Arc degradation, in an Arc knock-in mouse (ArcKR), where the predominant Arc ubiquitination sites were mutated, reduced the threshold to induce, and also enhanced, the strength of Group I metabotropic glutamate receptor-mediated long- term depression (DHPG-LTD). Here we have investigated if ArcKR expression changes long- term potentiation (LTP) in CA1 area of the hippocampus. As previously reported, there was no change in basal synaptic transmission at Schaffer collateral/commissural-CA1 (SC-CA1) synapses in ArcKR versus wild-type (WT) mice. There was however a significant increase in the amplitude of synaptically-induced (with low frequency paired-pulse stimulation) LTD in ArcKR mice. Theta burst stimulation-evoked LTP at SC-CA1 synapses was significantly reduced in ArcKR versus WT mice (after 2 hours). Group 1 mGluR priming of LTP was abolished in ArcKR mice, which could also potentially contribute to a depression of LTP. Although high frequency-stimulation (HFS)-induced LTP was not significantly different in ArcKR compared to WT mice (after 1 hour) there was a phenotype in environmentally enriched mice, with the ratio of LTP to short-term potentiation (STP) significantly reduced in ArcKR mice. These findings support the hypothesis that Arc ubiquitination supports the induction and expression of LTP, likely via limiting Arc-dependent removal of AMPA receptors at synapses
    corecore