709 research outputs found

    A parity breaking Ising chain Hamiltonian as a Brownian motor

    Full text link
    We consider the translationally invariant but parity (left-right symmetry) breaking Ising chain Hamiltonian \begin{equation} {\cal H} = -U_2\sum_{k} s_{k}s_{k+1} - U_3\sum_{k} s_{k}s_{k+1}s_{k+3} \nonumber \end{equation} and let this system evolve by Kawasaki spin exchange dynamics. Monte Carlo simulations show that perturbations forcing this system off equilibrium make it act as a Brownian molecular motor which, in the lattice gas interpretation, transports particles along the chain. We determine the particle current under various different circumstances, in particular as a function of the ratio U3/U2U_3/U_2 and of the conserved magnetization M=kskM=\sum_k s_k. The symmetry of the U3U_3 term in the Hamiltonian is discussedComment: 11 pages, 4 figure

    The two-dimensional two-component plasma plus background on a sphere : Exact results

    Full text link
    An exact solution is given for a two-dimensional model of a Coulomb gas, more general than the previously solved ones. The system is made of a uniformly charged background, positive particles, and negative particles, on the surface of a sphere. At the special value Γ=2\Gamma = 2 of the reduced inverse temperature, the classical equilibrium statistical mechanics is worked out~: the correlations and the grand potential are calculated. The thermodynamic limit is taken, and as it is approached the grand potential exhibits a finite-size correction of the expected universal form.Comment: 23 pages, Plain Te

    Charge renormalization and other exact coupling corrections in the dipolar effective interaction in an electrolyte near a dielectric wall

    Full text link
    The aim of the paper is to study the renormalizations of the charge and of the screening length that appear in the large-distance behavior of the effective pairwise interaction between two charges in a dilute electrolyte solution, both along a dielectric wall and in the bulk. The electrolyte is described by the primitive model in the framework of classical statistical mechanics and the electrostatic response of the wall is characterized by its dielectric constant.Comment: 60 pages 9 figure

    Granular Rough Sphere in a Low-Density Thermal Bath

    Full text link
    We study the stationary state of a rough granular sphere immersed in a thermal bath composed of point particles. When the center of mass of the sphere is fixed the stationary angular velocity distribution is shown to be Gaussian with an effective temperature lower than that of the bath. For a freely moving rough sphere coupled to the thermostat via inelastic collisions we find a condition under which the joint distribution of the translational and rotational velocities is a product of Gaussian distributions with the same effective temperature. In this rather unexpected case we derive a formula for the stationary energy flow from the thermostat to the sphere in accordance with Fourier law

    New duality relation for the Discrete Gaussian SOS model on a torus

    Full text link
    We construct a new duality for two-dimensional Discrete Gaussian models. It is based on a known one-dimensional duality and on a mapping, implied by the Chinese remainder theorem, between the sites of an N×MN\times M torus and those of a ring of NMNM sites. The duality holds for an arbitrary translation invariant interaction potential v(r)v(\mathbf{r}) between the height variables on the torus. It leads to pairs (v,v~)(v,\widetilde{v}) of mutually dual potentials and to a temperature inversion according to β~=π2/β\widetilde{\beta}=\pi^2/\beta. When v(r)v(\mathbf{r}) is isotropic, duality renders an anisotropic v~\widetilde{v}. This is the case, in particular, for the potential that is dual to an isotropic nearest-neighbor potential. In the thermodynamic limit this dual potential is shown to decay with distance according to an inverse square law with a quadrupolar angular dependence. There is a single pair of self-dual potentials v=v~v^\star=\widetilde{v^\star}. At the self-dual temperature β=β~=π\beta^\star=\widetilde{\beta^\star}=\pi the height-height correlation can be calculated explicitly; it is anisotropic and diverges logarithmically with distance.Comment: 26 pages, 2 figure

    The Ideal Conductor Limit

    Full text link
    This paper compares two methods of statistical mechanics used to study a classical Coulomb system S near an ideal conductor C. The first method consists in neglecting the thermal fluctuations in the conductor C and constrains the electric potential to be constant on it. In the second method the conductor C is considered as a conducting Coulomb system the charge correlation length of which goes to zero. It has been noticed in the past, in particular cases, that the two methods yield the same results for the particle densities and correlations in S. It is shown that this is true in general for the quantities which depend only on the degrees of freedom of S, but that some other quantities, especially the electric potential correlations and the stress tensor, are different in the two approaches. In spite of this the two methods give the same electric forces exerted on S.Comment: 19 pages, plain TeX. Submited to J. Phys. A: Math. Ge

    Casimir force between two ideal-conductor walls revisited

    Full text link
    The high-temperature aspects of the Casimir force between two neutral conducting walls are studied. The mathematical model of "inert" ideal-conductor walls, considered in the original formulations of the Casimir effect, is based on the universal properties of the electromagnetic radiation in the vacuum between the conductors, with zero boundary conditions for the tangential components of the electric field on the walls. This formulation seems to be in agreement with experiments on metallic conductors at room temperature. At high temperatures or large distances, at least, fluctuations of the electric field are present in the bulk and at the surface of a particle system forming the walls, even in the high-density limit: "living" ideal conductors. This makes the enforcement of the inert boundary conditions inadequate. Within a hierarchy of length scales, the high-temperature Casimir force is shown to be entirely determined by the thermal fluctuations in the conducting walls, modelled microscopically by classical Coulomb fluids in the Debye-H\"{u}ckel regime. The semi-classical regime, in the framework of quantum electrodynamics, is studied in the companion letter by P.R.Buenzli and Ph.A.Martin, cond-mat/0506363, Europhys.Lett.72, 42 (2005).Comment: 7 pages.One reference updated. Domain of validity of eq.(11) correcte

    Statistical properties of charged interfaces

    Full text link
    We consider the equilibrium statistical properties of interfaces submitted to competing interactions; a long-range repulsive Coulomb interaction inherent to the charged interface and a short-range, anisotropic, attractive one due to either elasticity or confinement. We focus on one-dimensional interfaces such as strings. Model systems considered for applications are mainly aggregates of solitons in polyacetylene and other charge density wave systems, domain lines in uniaxial ferroelectrics and the stripe phase of oxides. At zero temperature, we find a shape instability which lead, via phase transitions, to tilted phases. Depending on the regime, elastic or confinement, the order of the zero-temperature transition changes. Thermal fluctuations lead to a pure Coulomb roughening of the string, in addition to the usual one, and to the presence of angular kinks. We suggest that such instabilities might explain the tilting of stripes in cuprate oxides. The 3D problem of the charged wall is also analyzed. The latter experiences instabilities towards various tilted phases separated by a tricritical point in the elastic regime. In the confinement regime, the increase of dimensionality favors either the melting of the wall into a Wigner crystal of its constituent charges or a strongly inclined wall which might have been observed in nickelate oxides.Comment: 17 pages, 11 figure

    Self-consistent equation for an interacting Bose gas

    Full text link
    We consider interacting Bose gas in thermal equilibrium assuming a positive and bounded pair potential V(r)V(r) such that 0<\int d\br V(r) = a<\infty. Expressing the partition function by the Feynman-Kac functional integral yields a classical-like polymer representation of the quantum gas. With Mayer graph summation techniques, we demonstrate the existence of a self-consistent relation ρ(μ)=F(μaρ(μ))\rho (\mu)=F(\mu-a\rho(\mu)) between the density ρ\rho and the chemical potential μ\mu, valid in the range of convergence of Mayer series. The function FF is equal to the sum of all rooted multiply connected graphs. Using Kac's scaling V_{\gamma}(\br)=\gamma^{3}V(\gamma r) we prove that in the mean-field limit γ0\gamma\to 0 only tree diagrams contribute and function FF reduces to the free gas density. We also investigate how to extend the validity of the self-consistent relation beyond the convergence radius of Mayer series (vicinity of Bose-Einstein condensation) and study dominant corrections to mean field. At lowest order, the form of function FF is shown to depend on single polymer partition function for which we derive lower and upper bounds and on the resummation of ring diagrams which can be analytically performed.Comment: 33 pages, 6 figures, submitted to Phys.Rev.
    corecore