We study the stationary state of a rough granular sphere immersed in a
thermal bath composed of point particles. When the center of mass of the sphere
is fixed the stationary angular velocity distribution is shown to be Gaussian
with an effective temperature lower than that of the bath. For a freely moving
rough sphere coupled to the thermostat via inelastic collisions we find a
condition under which the joint distribution of the translational and
rotational velocities is a product of Gaussian distributions with the same
effective temperature. In this rather unexpected case we derive a formula for
the stationary energy flow from the thermostat to the sphere in accordance with
Fourier law