1,938 research outputs found

    Does a relativistic metric generalization of Newtonian gravity exist in 2+1 dimensions?

    Get PDF
    It is shown that, contrary to previous claims, a scalar tensor theory of Brans-Dicke type provides a relativistic generalization of Newtonian gravity in 2+1 dimensions. The theory is metric and test particles follow the space-time geodesics. The static isotropic solution is studied in vacuum and in regions filled with an incompressible perfect fluid. It is shown that the solutions can be consistently matched at the matter vacuum interface, and that the Newtonian behavior is recovered in the weak field regime.Comment: 6 pages, no figures, Revtex4. Some discussions on the physical nature of the interior solution and on the omega->infinity limit and some references added. Version to appear in Phys. Rev.

    Ringing the eigenmodes from compact manifolds

    Full text link
    We present a method for finding the eigenmodes of the Laplace operator acting on any compact manifold. The procedure can be used to simulate cosmic microwave background fluctuations in multi-connected cosmological models. Other applications include studies of chaotic mixing and quantum chaos.Comment: 11 pages, 8 figures, IOP format. To be published in the proceedings of the Cleveland Cosmology and Topology Workshop 17-19 Oct 1997. Submitted to Class. Quant. Gra

    A Solution to the Galactic Foreground Problem for LISA

    Full text link
    Low frequency gravitational wave detectors, such as the Laser Interferometer Space Antenna (LISA), will have to contend with large foregrounds produced by millions of compact galactic binaries in our galaxy. While these galactic signals are interesting in their own right, the unresolved component can obscure other sources. The science yield for the LISA mission can be improved if the brighter and more isolated foreground sources can be identified and regressed from the data. Since the signals overlap with one another we are faced with a ``cocktail party'' problem of picking out individual conversations in a crowded room. Here we present and implement an end-to-end solution to the galactic foreground problem that is able to resolve tens of thousands of sources from across the LISA band. Our algorithm employs a variant of the Markov Chain Monte Carlo (MCMC) method, which we call the Blocked Annealed Metropolis-Hastings (BAM) algorithm. Following a description of the algorithm and its implementation, we give several examples ranging from searches for a single source to searches for hundreds of overlapping sources. Our examples include data sets from the first round of Mock LISA Data Challenges.Comment: 19 pages, 27 figure

    Chaotic Scattering and Capture of Strings by Black Hole

    Full text link
    We consider scattering and capture of circular cosmic strings by a Schwarzschild black hole. Although being a priori a very simple axially symmetric two-body problem, it shows all the features of chaotic scattering. In particular, it contains a fractal set of unstable periodic solutions; a so-called strange repellor. We study the different types of trajectories and obtain the fractal dimension of the basin-boundary separating the space of initial conditions according to the different asymptotic outcomes. We also consider the fractal dimension as a function of energy, and discuss the transition from order to chaos.Comment: RevTeX 3.1, 9 pages, 5 figure

    Chaos in Quantum Cosmology

    Get PDF
    Much of the foundational work on quantum cosmology employs a simple minisuperspace model describing a Friedmann-Robertson-Walker universe containing a massive scalar field. We show that the classical limit of this model exhibits deterministic chaos and explore some of the consequences for the quantum theory. In particular, the breakdown of the WKB approximation calls into question many of the standard results in quantum cosmology.Comment: 4 pages, 4 figures, RevTex two column style. Minor revisions and clarifications to reflect version published in Phys. Rev. Let

    Certain aspects of regularity in scalar field cosmological dynamics

    Full text link
    We consider dynamics of the FRW Universe with a scalar field. Using Maupertuis principle we find a curvature of geodesics flow and show that zones of positive curvature exist for all considered types of scalar field potential. Usually, phase space of systems with the positive curvature contains islands of regular motion. We find these islands numerically for shallow scalar field potentials. It is shown also that beyond the physical domain the islands of regularity exist for quadratic potentials as well.Comment: 15 pages with 4 figures; typos corrected, final version to appear in Regular and Chaotic Dynamic

    Homoclinic chaos in the dynamics of a general Bianchi IX model

    Get PDF
    The dynamics of a general Bianchi IX model with three scale factors is examined. The matter content of the model is assumed to be comoving dust plus a positive cosmological constant. The model presents a critical point of saddle-center-center type in the finite region of phase space. This critical point engenders in the phase space dynamics the topology of stable and unstable four dimensional tubes R×S3R \times S^3, where RR is a saddle direction and S3S^3 is the manifold of unstable periodic orbits in the center-center sector. A general characteristic of the dynamical flow is an oscillatory mode about orbits of an invariant plane of the dynamics which contains the critical point and a Friedmann-Robertson-Walker (FRW) singularity. We show that a pair of tubes (one stable, one unstable) emerging from the neighborhood of the critical point towards the FRW singularity have homoclinic transversal crossings. The homoclinic intersection manifold has topology R×S2R \times S^2 and is constituted of homoclinic orbits which are bi-asymptotic to the S3S^3 center-center manifold. This is an invariant signature of chaos in the model, and produces chaotic sets in phase space. The model also presents an asymptotic DeSitter attractor at infinity and initial conditions sets are shown to have fractal basin boundaries connected to the escape into the DeSitter configuration (escape into inflation), characterizing the critical point as a chaotic scatterer.Comment: 11 pages, 6 ps figures. Accepted for publication in Phys. Rev.

    Stability analysis and quasinormal modes of Reissner Nordstr{\o}m Space-time via Lyapunov exponent

    Full text link
    We explicitly derive the proper time (τ)(\tau) principal Lyapunov exponent (λp\lambda_{p}) and coordinate time (tt) principal Lyapunov exponent (λc\lambda_{c}) for Reissner Nordstr{\o}m (RN) black hole (BH) . We also compute their ratio. For RN space-time, it is shown that the ratio is λpλc=r0r023Mr0+2Q2\frac{\lambda_{p}}{\lambda_{c}}=\frac{r_{0}}{\sqrt{r_{0}^2-3Mr_{0}+2Q^2}} for time-like circular geodesics and for Schwarzschild BH it is λpλc=r0r03M\frac{\lambda_{p}}{\lambda_{c}}=\frac{\sqrt{r_{0}}}{\sqrt{r_{0}-3M}}. We further show that their ratio λpλc\frac{\lambda_{p}}{\lambda_{c}} may vary from orbit to orbit. For instance, Schwarzschild BH at innermost stable circular orbit(ISCO), the ratio is λpλcrISCO=6M=2\frac{\lambda_{p}}{\lambda_{c}}\mid_{r_{ISCO}=6M}=\sqrt{2} and at marginally bound circular orbit (MBCO) the ratio is calculated to be λpλcrmb=4M=2\frac{\lambda_{p}}{\lambda_{c}}\mid_{r_{mb}=4M}=2. Similarly, for extremal RN BH the ratio at ISCO is λpλcrISCO=4M=223\frac{\lambda_{p}}{\lambda_{c}}\mid_{r_{ISCO}=4M}=\frac{2\sqrt{2}}{\sqrt{3}}. We also further analyse the geodesic stability via this exponent. By evaluating the Lyapunov exponent, it is shown that in the eikonal limit , the real and imaginary parts of the quasi-normal modes of RN BH is given by the frequency and instability time scale of the unstable null circular geodesics.Comment: Accepted in Pramana, 07/09/201

    Corrections to Gravity due to a Sol Manifold Extra Dimensional Space

    Full text link
    The corrections to the gravitational potential due to a Sol extra dimensional compact manifold, denoted as MA3M_A^3, are studied. The total spacetime is of the form M4×MA3M^4\times M_A^3. The range of the Sol corrections is investigated and compared to the range of the T3T^3 corrections.Comment: 13 pages, 10 figures, published versio

    Moving boulders in flash floods and estimating flow conditions using boulders in ancient deposits

    Get PDF
    Boulders moving in flash floods cause considerable damage and casualties. More and bigger boulders move in flash floods than predicted from published theory. The interpretation of flow conditions from the size of large particles within flash flood deposits has, until now, generally assumed that the velocity (or discharge) is unchanging in time (i.e. flow is steady), or changes instantaneously between periods of constant conditions. Standard practice is to apply theories developed for steady flow conditions to flash floods, which are however inherently very unsteady flows. This is likely to lead to overestimates of peak flow velocity (or discharge). Flash floods are characterised by extremely rapid variations in flow that generate significant transient forces in addition to the mean-flow drag. These transient forces, generated by rapid velocity changes, are generally ignored in published theories, but they are briefly so large that they could initiate the motion of boulders. This paper develops a theory for the initiation of boulder movement due to the additional impulsive force generated by unsteady flow, and discusses the implications. Keywords
    corecore