2,770 research outputs found

    Detecting the Cosmic Gravitational Wave Background with the Big Bang Observer

    Full text link
    The detection of the Cosmic Microwave Background Radiation (CMB) was one of the most important cosmological discoveries of the last century. With the development of interferometric gravitational wave detectors, we may be in a position to detect the gravitational equivalent of the CMB in this century. The Cosmic Gravitational Background (CGB) is likely to be isotropic and stochastic, making it difficult to distinguish from instrument noise. The contribution from the CGB can be isolated by cross-correlating the signals from two or more independent detectors. Here we extend previous studies that considered the cross-correlation of two Michelson channels by calculating the optimal signal to noise ratio that can be achieved by combining the full set of interferometry variables that are available with a six link triangular interferometer. In contrast to the two channel case, we find that the relative orientation of a pair of coplanar detectors does not affect the signal to noise ratio. We apply our results to the detector design described in the Big Bang Observer (BBO) mission concept study and find that BBO could detect a background with Ωgw>2.2×10−17\Omega_{gw} > 2.2 \times 10^{-17}.Comment: 15 pages, 12 Figure

    Copper cable theft: revisiting the price–theft hypothesis

    Get PDF
    Objectives: To test the commonly espoused but little examined hypothesis that fluctuations in the price of metal are associated with changes in the volume of metal theft. Specifically, we analyze the relationship between the price of copper and the number of police recorded 'live’ copper cable thefts from the British railway network (2006 to 2012)

    The Effects of Orbital Motion on LISA Time Delay Interferometry

    Full text link
    In an effort to eliminate laser phase noise in laser interferometer spaceborne gravitational wave detectors, several combinations of signals have been found that allow the laser noise to be canceled out while gravitational wave signals remain. This process is called time delay interferometry (TDI). In the papers that defined the TDI variables, their performance was evaluated in the limit that the gravitational wave detector is fixed in space. However, the performance depends on certain symmetries in the armlengths that are available if the detector is fixed in space, but that will be broken in the actual rotating and flexing configuration produced by the LISA orbits. In this paper we investigate the performance of these TDI variables for the real LISA orbits. First, addressing the effects of rotation, we verify Daniel Shaddock's result that the Sagnac variables will not cancel out the laser phase noise, and we also find the same result for the symmetric Sagnac variable. The loss of the latter variable would be particularly unfortunate since this variable also cancels out gravitational wave signal, allowing instrument noise in the detector to be isolated and measured. Fortunately, we have found a set of more complicated TDI variables, which we call Delta-Sagnac variables, one of which accomplishes the same goal as the symmetric Sagnac variable to good accuracy. Finally, however, as we investigate the effects of the flexing of the detector arms due to non-circular orbital motion, we show that all variables, including the interferometer variables, which survive the rotation-induced loss of direction symmetry, will not completely cancel laser phase noise when the armlengths are changing with time. This unavoidable problem will place a stringent requirement on laser stability of 5 Hz per root Hz.Comment: 12 pages, 2 figure

    Chaotic behavior in a Z_2 x Z_2 field theory

    Full text link
    We investigate the presence of chaos in a system of two real scalar fields with discrete Z_2 x Z_2 symmetry. The potential that identify the system is defined with a real parameter r and presents distinct features for r>0 and for r<0. For static field configurations, the system supports two topological sectors for r>0, and only one for r<0. Under the assumption of spatially homogeneous fields, the system exhibts chaotic behavior almost everywhere in parameter space. In particular a more complex dynamics appears for r>0; in this case chaos can decrease for increasing energy, a fact that is absent for r<0.Comment: Revtex, 13 pages, no figures. Version with figures in Int. J. Mod. Phys. A14 (1999) 496

    Chaos in the Einstein-Yang-Mills Equations

    Full text link
    Yang-Mills color fields evolve chaotically in an anisotropically expanding universe. The chaotic behaviour differs from that found in anisotropic Mixmaster universes. The universe isotropizes at late times, approaching the mean expansion rate of a radiation-dominated universe. However, small chaotic oscillations of the shear and color stresses continue indefinitely. An invariant, coordinate-independent characterisation of the chaos is provided by means of fractal basin boundaries.Comment: 3 pages LaTeX + 3 pages of figure

    Tests of Bayesian Model Selection Techniques for Gravitational Wave Astronomy

    Full text link
    The analysis of gravitational wave data involves many model selection problems. The most important example is the detection problem of selecting between the data being consistent with instrument noise alone, or instrument noise and a gravitational wave signal. The analysis of data from ground based gravitational wave detectors is mostly conducted using classical statistics, and methods such as the Neyman-Pearson criteria are used for model selection. Future space based detectors, such as the \emph{Laser Interferometer Space Antenna} (LISA), are expected to produced rich data streams containing the signals from many millions of sources. Determining the number of sources that are resolvable, and the most appropriate description of each source poses a challenging model selection problem that may best be addressed in a Bayesian framework. An important class of LISA sources are the millions of low-mass binary systems within our own galaxy, tens of thousands of which will be detectable. Not only are the number of sources unknown, but so are the number of parameters required to model the waveforms. For example, a significant subset of the resolvable galactic binaries will exhibit orbital frequency evolution, while a smaller number will have measurable eccentricity. In the Bayesian approach to model selection one needs to compute the Bayes factor between competing models. Here we explore various methods for computing Bayes factors in the context of determining which galactic binaries have measurable frequency evolution. The methods explored include a Reverse Jump Markov Chain Monte Carlo (RJMCMC) algorithm, Savage-Dickie density ratios, the Schwarz-Bayes Information Criterion (BIC), and the Laplace approximation to the model evidence. We find good agreement between all of the approaches.Comment: 11 pages, 6 figure

    Extracting galactic binary signals from the first round of Mock LISA Data Challenges

    Full text link
    We report on the performance of an end-to-end Bayesian analysis pipeline for detecting and characterizing galactic binary signals in simulated LISA data. Our principal analysis tool is the Blocked-Annealed Metropolis Hasting (BAM) algorithm, which has been optimized to search for tens of thousands of overlapping signals across the LISA band. The BAM algorithm employs Bayesian model selection to determine the number of resolvable sources, and provides posterior distribution functions for all the model parameters. The BAM algorithm performed almost flawlessly on all the Round 1 Mock LISA Data Challenge data sets, including those with many highly overlapping sources. The only misses were later traced to a coding error that affected high frequency sources. In addition to the BAM algorithm we also successfully tested a Genetic Algorithm (GA), but only on data sets with isolated signals as the GA has yet to be optimized to handle large numbers of overlapping signals.Comment: 13 pages, 4 figures, submitted to Proceedings of GWDAW-11 (Berlin, Dec. '06

    Scaling Bounded Model Checking By Transforming Programs With Arrays

    Full text link
    Bounded Model Checking is one the most successful techniques for finding bugs in program. However, model checkers are resource hungry and are often unable to verify programs with loops iterating over large arrays.We present a transformation that enables bounded model checkers to verify a certain class of array properties. Our technique transforms an array-manipulating (ANSI-C) program to an array-free and loop-free (ANSI-C) program thereby reducing the resource requirements of a model checker significantly. Model checking of the transformed program using an off-the-shelf bounded model checker simulates the loop iterations efficiently. Thus, our transformed program is a sound abstraction of the original program and is also precise in a large number of cases - we formally characterize the class of programs for which it is guaranteed to be precise. We demonstrate the applicability and usefulness of our technique on both industry code as well as academic benchmarks

    Topology of the Universe: background and recent observational approaches

    Get PDF
    Is the Universe (a spatial section thereof) finite or infinite? Knowing the global geometry of a Friedmann-Lema\^{\i}tre (FL) universe requires knowing both its curvature and its topology. A flat or hyperbolic (``open'') FL universe is {\em not} necessarily infinite in volume. Multiply connected flat and hyperbolic models are, in general, as consistent with present observations on scales of 1-20{\hGpc} as are the corresponding simply connected flat and hyperbolic models. The methods of detecting multiply connected models (MCM's) are presently in their pioneering phase of development and the optimal observationally realistic strategy is probably yet to be calculated. Constraints against MCM's on ~1-4 h^{-1} Gpc scales have been claimed, but relate more to inconsistent assumptions on perturbation statistics rather than just to topology. Candidate 3-manifolds based on hypothesised multiply imaged objects are being offered for observational refutation. The theoretical and observational sides of this rapidly developing subject have yet to make any serious contact, but the prospects of a significant detection in the coming decade may well propel the two together.Comment: 5 pages, proceedings of the Workshop ``Cosmology: Observations Confront Theories,'' 11-17 Jan 1999, IIT Kharagpur, West Bengal, to appear in Pramana - Journal of Physic

    The Challenges in Gravitational Wave Astronomy for Space-Based Detectors

    Full text link
    The Gravitational Wave (GW) universe contains a wealth of sources which, with the proper treatment, will open up the universe as never before. By observing massive black hole binaries to high redshifts, we should begin to explore the formation process of seed black holes and track galactic evolution to the present day. Observations of extreme mass ratio inspirals will allow us to explore galactic centers in the local universe, as well as providing tests of General Relativity and constraining the value of Hubble's constant. The detection of compact binaries in our own galaxy may allow us to model stellar evolution in the Milky Way. Finally, the detection of cosmic (super)strings and a stochastic background would help us to constrain cosmological models. However, all of this depends on our ability to not only resolve sources and carry out parameter estimation, but also on our ability to define an optimal data analysis strategy. In this presentation, I will examine the challenges that lie ahead in GW astronomy for the ESA L3 Cosmic Vision mission, eLISA.Comment: 12 pages. Plenary presentation to appear in the Proceedings of the Sant Cugat Forum on Astrophysics, Sant Cugat, April 22-25, 201
    • …
    corecore