3,178 research outputs found

    Separating Gravitational Wave Signals from Instrument Artifacts

    Get PDF
    Central to the gravitational wave detection problem is the challenge of separating features in the data produced by astrophysical sources from features produced by the detector. Matched filtering provides an optimal solution for Gaussian noise, but in practice, transient noise excursions or ``glitches'' complicate the analysis. Detector diagnostics and coincidence tests can be used to veto many glitches which may otherwise be misinterpreted as gravitational wave signals. The glitches that remain can lead to long tails in the matched filter search statistics and drive up the detection threshold. Here we describe a Bayesian approach that incorporates a more realistic model for the instrument noise allowing for fluctuating noise levels that vary independently across frequency bands, and deterministic ``glitch fitting'' using wavelets as ``glitch templates'', the number of which is determined by a trans-dimensional Markov chain Monte Carlo algorithm. We demonstrate the method's effectiveness on simulated data containing low amplitude gravitational wave signals from inspiraling binary black hole systems, and simulated non-stationary and non-Gaussian noise comprised of a Gaussian component with the standard LIGO/Virgo spectrum, and injected glitches of various amplitude, prevalence, and variety. Glitch fitting allows us to detect significantly weaker signals than standard techniques.Comment: 21 pages, 18 figure

    A radiometer for stochastic gravitational waves

    Full text link
    The LIGO Scientific Collaboration recently reported a new upper limit on an isotropic stochastic background of gravitational waves obtained based on the data from the 3rd LIGO science Run (S3). Now I present a new method for obtaining directional upper limits that the LIGO Scientific Collaboration intends to use for future LIGO science runs and that essentially implements a gravitational wave radiometer.Comment: 6 pages, 2 figure

    Enabling high confidence detections of gravitational-wave bursts

    Get PDF
    With the advanced LIGO and Virgo detectors taking observations the detection of gravitational waves is expected within the next few years. Extracting astrophysical information from gravitational wave detections is a well-posed problem and thoroughly studied when detailed models for the waveforms are available. However, one motivation for the field of gravitational wave astronomy is the potential for new discoveries. Recognizing and characterizing unanticipated signals requires data analysis techniques which do not depend on theoretical predictions for the gravitational waveform. Past searches for short-duration un-modeled gravitational wave signals have been hampered by transient noise artifacts, or "glitches," in the detectors. In some cases, even high signal-to-noise simulated astrophysical signals have proven difficult to distinguish from glitches, so that essentially any plausible signal could be detected with at most 2-3 σ\sigma level confidence. We have put forth the BayesWave algorithm to differentiate between generic gravitational wave transients and glitches, and to provide robust waveform reconstruction and characterization of the astrophysical signals. Here we study BayesWave's capabilities for rejecting glitches while assigning high confidence to detection candidates through analytic approximations to the Bayesian evidence. Analytic results are tested with numerical experiments by adding simulated gravitational wave transient signals to LIGO data collected between 2009 and 2010 and found to be in good agreement.Comment: 15 pages, 6 figures, submitted to PR

    Detecting the Cosmic Gravitational Wave Background with the Big Bang Observer

    Full text link
    The detection of the Cosmic Microwave Background Radiation (CMB) was one of the most important cosmological discoveries of the last century. With the development of interferometric gravitational wave detectors, we may be in a position to detect the gravitational equivalent of the CMB in this century. The Cosmic Gravitational Background (CGB) is likely to be isotropic and stochastic, making it difficult to distinguish from instrument noise. The contribution from the CGB can be isolated by cross-correlating the signals from two or more independent detectors. Here we extend previous studies that considered the cross-correlation of two Michelson channels by calculating the optimal signal to noise ratio that can be achieved by combining the full set of interferometry variables that are available with a six link triangular interferometer. In contrast to the two channel case, we find that the relative orientation of a pair of coplanar detectors does not affect the signal to noise ratio. We apply our results to the detector design described in the Big Bang Observer (BBO) mission concept study and find that BBO could detect a background with Ωgw>2.2×1017\Omega_{gw} > 2.2 \times 10^{-17}.Comment: 15 pages, 12 Figure

    Co-accelerated particles in the C-metric

    Get PDF
    With appropriately chosen parameters, the C-metric represents two uniformly accelerated black holes moving in the opposite directions on the axis of the axial symmetry (the z-axis). The acceleration is caused by nodal singularities located on the z-axis. In the~present paper, geodesics in the~C-metric are examined. In general there exist three types of timelike or null geodesics in the C-metric: geodesics describing particles 1) falling under the black hole horizon; 2)crossing the acceleration horizon; and 3) orbiting around the z-axis and co-accelerating with the black holes. Using an effective potential, it can be shown that there exist stable timelike geodesics of the third type if the product of the parameters of the C-metric, mA, is smaller than a certain critical value. Null geodesics of the third type are always unstable. Special timelike and null geodesics of the third type are also found in an analytical form.Comment: 10 pages, 12 EPS figures, changes mainly in abstract & introductio

    Space missions to detect the cosmic gravitational-wave background

    Get PDF
    It is thought that a stochastic background of gravitational waves was produced during the formation of the universe. A great deal could be learned by measuring this Cosmic Gravitational-wave Background (CGB), but detecting the CGB presents a significant technological challenge. The signal strength is expected to be extremely weak, and there will be competition from unresolved astrophysical foregrounds such as white dwarf binaries. Our goal is to identify the most promising approach to detect the CGB. We study the sensitivities that can be reached using both individual, and cross-correlated pairs of space based interferometers. Our main result is a general, coordinate free formalism for calculating the detector response that applies to arbitrary detector configurations. We use this general formalism to identify some promising designs for a GrAvitational Background Interferometer (GABI) mission. Our conclusion is that detecting the CGB is not out of reach.Comment: 22 pages, 7 figures, IOP style, References Adde

    Prospects for observing ultra-compact binaries with space-based gravitational wave interferometers and optical telescopes

    Get PDF
    Space-based gravitational wave interferometers are sensitive to the galactic population of ultra-compact binaries. An important subset of the ultra-compact binary population are those stars that can be individually resolved by both gravitational wave interferometers and electromagnetic telescopes. The aim of this paper is to quantify the multi-messenger potential of space-based interferometers with arm-lengths between 1 and 5 Gm. The Fisher Information Matrix is used to estimate the number of binaries from a model of the Milky Way which are localized on the sky by the gravitational wave detector to within 1 and 10 square degrees and bright enough to be detected by a magnitude limited survey. We find, depending on the choice of GW detector characteristics, limiting magnitude, and observing strategy, that up to several hundred gravitational wave sources could be detected in electromagnetic follow-up observations.Comment: 6 pages, 3 figures Updated to include new results. Submitted to MNRA

    BayesWave: Bayesian Inference for Gravitational Wave Bursts and Instrument Glitches

    Full text link
    A central challenge in Gravitational Wave Astronomy is identifying weak signals in the presence of non-stationary and non-Gaussian noise. The separation of gravitational wave signals from noise requires good models for both. When accurate signal models are available, such as for binary Neutron star systems, it is possible to make robust detection statements even when the noise is poorly understood. In contrast, searches for "un-modeled" transient signals are strongly impacted by the methods used to characterize the noise. Here we take a Bayesian approach and introduce a multi-component, variable dimension, parameterized noise model that explicitly accounts for non-stationarity and non-Gaussianity in data from interferometric gravitational wave detectors. Instrumental transients (glitches) and burst sources of gravitational waves are modeled using a Morlet-Gabor continuous wavelet frame. The number and placement of the wavelets is determined by a trans-dimensional Reversible Jump Markov Chain Monte Carlo algorithm. The Gaussian component of the noise and sharp line features in the noise spectrum are modeled using the BayesLine algorithm, which operates in concert with the wavelet model.Comment: 36 pages, 15 figures, Version accepted by Class. Quant. Gra

    Prototype Global Analysis of LISA Data with Multiple Source Types

    Full text link
    The novel data analysis challenges posed by the Laser Interferometer Space Antenna (LISA) arise from the overwhelmingly large number of astrophysical sources in the measurement band and the density with which they are found in the data. Robust detection and characterization of the numerous gravitational wave sources in LISA data can not be done sequentially, but rather through a simultaneous global fit of a data model containing the full suite of astrophysical and instrumental features present in the data. While previous analyses have focused on individual source types in isolation, here we present the first demonstration of a LISA global fit analysis containing combined astrophysical populations. The prototype pipeline uses a blocked Metropolis Hastings algorithm to alternatingly fit to a population of ultra compact galactic binaries, known ``verification binaries'' already identified by electromagnetic observations, a population of massive black hole mergers, and an instrument noise model. The Global LISA Analysis Software Suite (GLASS) is assembled from independently developed samplers for the different model components. The modular design enables flexibility to future development by defining standard interfaces for adding new, or updating additional, components to the global fit without being overly prescriptive for how those modules must be internally designed. The GLASS pipeline is demonstrated on data simulated for the LISA Data Challenge 2b. Results of the analysis and a road-map for continued development are described in detail.Comment: 23 pages, 21 figures, submitted to Phys Rev
    corecore