463 research outputs found

    The optical system of the H.E.S.S. II telescope

    Get PDF

    An atomically thin oxide layer on the elemental superconductor Ta(001) surface

    Full text link
    Recently the oxygen-reconstructed tantalum surface Ta(001)-p(3×\times3)-O has experienced considerable attention due its use as a potential platform for Majorana physics in adatom chains. Experimental studies using scanning tunneling microscopy and spectroscopy found rich atomic and electronic structures already for the clean Ta(001)-O surface, which we combine here with ab initioab~initio methods. We discover two metastable superstructures at the root of the different topographic patterns, discuss its emergence during annealing, and identify the electronic properties. The latter is determined as the sole origin for the contrast reversal seen at positive bias. The observed effects are essentially connected to the two distinct oxygen states appearing on the surface in different geometries. The second superstructure was found in simulations by introducing oxygen vacancies, what was also observed in tantalum pentoxide systems. Additionally we study the charge distribution on the oxidized surface and underline its importance for the adsorption process of polarizable atoms and molecules.Comment: 5 pages, 4 figures, supplementary informatio

    Surface-Cross-Linked Micelles as Multifunctionalized Organic Nanoparticles for Controlled Release, Light Harvesting, and Catalysis

    Get PDF
    Surfactant micelles are dynamic entities with a rapid exchange of monomers. By “clicking” tripropargylammonium-containing surfactants with diazide cross-linkers, we obtained surface-cross-linked micelles (SCMs) that could be multifunctionalized for different applications. They triggered membrane fusion through tunable electrostatic interactions with lipid bilayers. Antenna chromophores could be installed on them to create artificial light-harvesting complexes with efficient energy migration among tens to hundreds of chromophores. When cleavable cross-linkers were used, the SCMs could break apart in response to redox or pH signals, ejecting entrapped contents quickly as a result of built-in electrostatic stress. They served as caged surfactants whose surface activity was turned on by environmental stimuli. They crossed cell membranes readily. Encapsulated fluorophores showed enhanced photophysical properties including improved quantum yields and greatly expanded Stokes shifts. Catalytic groups could be installed on the surface or in the interior, covalently attached or physically entrapped. As enzyme mimics, the SCMs enabled rational engineering of the microenvironment around the catalysts to afford activity and selectivity not possible with conventional catalysts

    Automation and robotics considerations for a lunar base

    Get PDF
    An envisioned lunar outpost shares with other NASA missions many of the same criteria that have prompted the development of intelligent automation techniques with NASA. Because of increased radiation hazards, crew surface activities will probably be even more restricted than current extravehicular activity in low Earth orbit. Crew availability for routine and repetitive tasks will be at least as limited as that envisioned for the space station, particularly in the early phases of lunar development. Certain tasks are better suited to the untiring watchfulness of computers, such as the monitoring and diagnosis of multiple complex systems, and the perception and analysis of slowly developing faults in such systems. In addition, mounting costs and constrained budgets require that human resource requirements for ground control be minimized. This paper provides a glimpse of certain lunar base tasks as seen through the lens of automation and robotic (A&R) considerations. This can allow a more efficient focusing of research and development not only in A&R, but also in those technologies that will depend on A&R in the lunar environment

    The optical system of the H.E.S.S. imaging atmospheric Cherenkov telescopes, Part II: mirror alignment and point spread function

    Full text link
    Mirror facets of the H.E.S.S. imaging atmospheric Cherenkov telescopes are aligned using stars imaged onto the closed lid of the PMT camera, viewed by a CCD camera. The alignment procedure works reliably and includes the automatic analysis of CCD images and control of the facet alignment actuators. On-axis, 80% of the reflected light is contained in a circle of less than 1 mrad diameter. The spot widens with increasing angle to the telescope axis. In accordance with simulations, the spot size has roughly doubled at an angle of 1.4 degr. from the axis. The expected variation of spot size with elevation due to deformations of the support structure is visible, but is completely non-critical over the usual working range. Overall, the optical quality of the telescope exceeds the specifications.Comment: 23 pages, 13 figure

    Copepod species abundance from the Southern Ocean and other regions (1980–2005) – a legacy

    Get PDF
    This data collection originates from the efforts of Sigrid Schnack-Schiel (1946–2016), a zooplankton ecologist with great expertise in life cycle strategies of Antarctic calanoid copepods, who also investigated zooplankton communities in tropical and subtropical marine environments. Here, we present 33 data sets with abundances of planktonic copepods from 20 expeditions to the Southern Ocean (Weddell Sea, Scotia Sea, Amundsen Sea, Bellingshausen Sea, Antarctic Peninsula), one expedition to the Magellan region, one latitudinal transect in the eastern Atlantic Ocean, one expedition to the Great Meteor Bank, and one expedition to the northern Red Sea and Gulf of Aqaba as part of her scientific legacy. A total of 349 stations from 1980 to 2005 were archived. During most expeditions depth-stratified samples were taken with a Hydrobios multinet with five or nine nets, thus allowing inter-comparability between the different expeditions. A Nansen or a Bongo net was deployed only during four cruises. Maximum sampling depth varied greatly among stations due to different bottom depths. However, during 11 cruises to the Southern Ocean the maximum sampling depth was restricted to 1000&thinsp;m, even at locations with greater bottom depths. In the eastern Atlantic Ocean (PS63) sampling depth was restricted to the upper 300&thinsp;m. All data are now freely available at PANGAEA via the persistent identifier https://doi.org/10.1594/PANGAEA.884619.Abundance and distribution data for 284 calanoid copepod species and 28 taxa of other copepod orders are provided. For selected species the abundance distribution at all stations was explored, revealing for example that species within a genus may have contrasting distribution patterns (Ctenocalanus, Stephos). In combination with the corresponding metadata (sampling data and time, latitude, longitude, bottom depth, sampling depth interval) the analysis of the data sets may add to a better understanding how the environment (currents, temperature, depths, season) interacts with copepod abundance, distribution and diversity. For each calanoid copepod species, females, males and copepodites were counted separately, providing a unique resource for biodiversity and modelling studies. For selected species the five copepodite stages were also counted separately, thus also allowing the data to be used to study life cycle strategies of abundant or key species.</p

    The optical system of the H.E.S.S. imaging atmospheric Cherenkov telescopes, Part I: layout and components of the system

    Full text link
    H.E.S.S. -- the High Energy Stereoscopic System -- is a new system of large imaging atmospheric Cherenkov telescopes, with about 100 m^2 mirror area for each of four telescopes, and photomultiplier cameras with a large field of view (5 degr.) and small pixels (0.16 degr.). The dish and reflector are designed to provide good imaging properties over the full field of view, combined with mechanical stability. The paper describes the design criteria and specifications of the system, and the individual components -- dish, mirrors, and Winston cones -- as well as their characteristics. The optical performance of the telescope as a whole is the subject of a companion paper.Comment: 28 pages, 20 figure

    Correlation of Yu-Shiba-Rusinov States and Kondo Resonances in Artificial Spin Arrays on an s-Wave Superconductor

    Full text link
    Mutually interacting magnetic atoms coupled to a superconductor have gained enormous interest due to their potential for the realization of topological superconductivity. Individual magnetic impurities produce states within the superconducting energy gap known as Yu-Shiba-Rusinov (YSR) states. Here, using the tip of a scanning tunneling microscope, we artificially craft spin arrays consisting of an Fe adatom interacting with an assembly of interstitial Fe atoms (IFA) on a superconducting oxygen-reconstructed Ta(100) surface and show that the magnetic interaction between the adatom and the IFA assembly can be tuned by adjusting the number of IFAs in the assembly. The YSR state experiences a characteristic crossover in its energetic position and particle-hole spectral weight asymmetry when the Kondo resonance shows spectral depletion around the Fermi energy. By the help of slave-boson mean-field theory (SBMFT) and numerical renormalization group (NRG) calculations we associate the crossover with the transition from decoupled Kondo singlets to an antiferromagnetic ground state of the Fe adatom spin and the IFA assembly effective spin. © 2021 The Authors. Published by American Chemical Society.The authors thank Markus Ternes for fruitful discussions. This work was supported by the European Research Council Advanced Grant ADMIRE (Project 786020). R.W. and J.W. acknowledge funding by the Cluster of Excellence “Advanced Imaging of Matter” (EXC 2056, Project 390715994) as well as by the SFB 925-B9 “Light induced dynamics and control of correlated quantum systems” of the Deutsche Forschungsgemeinschaft (DFG). R.Ž. acknowledges support by the Slovenian Research Agency (ARRS) under Program P1-0044. M.V. and R.M. acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG) through Projects SFB668-A3 and -A1 and from the European Union’s Horizon 2020 research and innovation program under Grant Agreement 696656—GrapheneCore1. The work of M.V. was additionally funded through 2019 Equal Opportunity Fund of University of Hamburg. The DFT computations were performed with resources provided by the North-German Supercomputing Alliance (HLRN). S.P. and J.F thank Stiftelsen Olle Engqvist Byggmästare and Vetenskapsrådet for financial support
    corecore