3 research outputs found

    CRIMAC cruise report: Development of acoustic and optic methods for underwater target calssification - G.O. Sars 22.11 - 03.12 2022

    Get PDF
    The overarching objective of the survey is to collect data to support the CRIMAC activities and to collect data for the LoVe observatory. CRIMAC is a center of research-based innovation funded by the research council of Norway through their center for research-based innovation program (SFI). Sustainable, healthy food production and clean energy production for a growing population are important global goals, and CRIMAC will contribute to these by obtaining accurate underwater observations of gas, fish, nekton and other targets. The data will be used in conjunction with CRIMAC data from other surveys to build a reference data set for optical and acoustic target classification. The classification libraries will be used for developing methods and products toward the fishing industry and marine science. The survey was divided into two legs where leg one mainly focused on trawl instrumentation and data collection for behavioural studies on fish-trawl interactions. The main objectives of this part were to test in-trawl camera systems and data processing from such systems, test and develop trawl instrumentation and acoustic and optic monitoring of herring behaviour in relation to the trawl. The second leg of the survey focused mainly on broad band acoustic data, including sizing of fish using broad banded acoustics, noise estimation, calibration, time series consistency when changing to broad band acoustics, gas seep detection as well as performing the standard IMR LoVe transect.CRIMAC cruise report: Development of acoustic and optic methods for underwater target calssification - G.O. Sars 22.11 - 03.12 2022publishedVersio

    The Optimal Packet Duration of ALOHA and CSMA in Ad Hoc Wireless Networks

    No full text
    In this thesis the optimal transmission rate in ad hoc wireless networks is analyzed. The performance metric used in the analysis is probability of outage. In our system model, users/packets arrive randomly in space and time according to a Poisson point process, and are thereby transmitted to their intended destinations using either ALOHA or CSMA as the MAC protocol. Our model is based on an SINR requirement, i.e., the received SINR must be above some predetermined threshold value, for the whole duration of a packet, in order for the transmission to be considered successful. If this is not the case an outage has occurred. In order to analyze how the transmission rate affects the probability of outage, we assume packets of K bits, and let the packet duration, T, vary. The nodes in the network then transmit packets with a requested transmission rate of Rreq=K/T bits per second. We incorporate transmission rate into already existing lower bounds on the probability of outage of ALOHA and CSMA, and use these expressions to find the optimal packet duration that minimizes the probability of outage. For the ALOHA protocol, we derive an analytic expression for the optimal spectral efficiency of the network as a function of path loss, which is used to find the optimal packet duration Topt . For the CSMA protocol, the optimal packet duration is observed through simulations. We find that in order to minimize the probability of outage in our network, we should choose our system parameters such that our requested transmission rate divided by system bandwidth is equal to the optimal spectral efficiency of our network
    corecore