159 research outputs found

    Jugendbefragung im Landkreis Freyung-Grafenau. Projektbericht

    Get PDF
    Inhaltsverzeichnis I. Tabellenverzeichnis II. Abbildungsverzeichnis III. Projektbericht 1. Einleitung 2. Theoretische Einordnung 3. Anmerkungen zur Durchführung der Befragungsstudie 4. Wie attraktiv ist die Heimat? Ergebnispräsentation 4.1 Beschreibung der Stichprobe 4.2 Wie stellt sich die Situation für junge Leute im Landkreis dar? 4.3 Was sind die Ursachen für den Wunsch wegzugehen? 4.4 Begrenzte Reichweite der Studienergebnisse 4.5 Wünsche und Forderungen an Politik und Verwaltung 5. Zusammenfassung IV. Literatur V. Anhan

    Mapping Spikes to Sensations

    Get PDF
    Single-unit recordings conducted during perceptual decision-making tasks have yielded tremendous insights into the neural coding of sensory stimuli. In such experiments, detection or discrimination behavior (the psychometric data) is observed in parallel with spike trains in sensory neurons (the neurometric data). Frequently, candidate neural codes for information read-out are pitted against each other by transforming the neurometric data in some way and asking which code’s performance most closely approximates the psychometric performance. The code that matches the psychometric performance best is retained as a viable candidate and the others are rejected. In following this strategy, psychometric data is often considered to provide an unbiased measure of perceptual sensitivity. It is rarely acknowledged that psychometric data result from a complex interplay of sensory and non-sensory processes and that neglect of these processes may result in misestimating psychophysical sensitivity. This again may lead to erroneous conclusions regarding the adequacy of candidate neural codes. In this review, we first discuss requirements on the neural data for a subsequent neurometric-psychometric comparison. We then focus on different psychophysical tasks for the assessment of detection and discrimination performance and the cognitive processes that may underlie their execution. We discuss further factors that may compromise psychometric performance and how they can be detected or avoided. We believe that these considerations point to shortcomings in our understanding of the processes underlying perceptual decisions, and therefore offer potential for future research

    Cross-approximate entropy of cortical local field potentials quantifies effects of anesthesia - a pilot study in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anesthetics dose-dependently shift electroencephalographic (EEG) activity towards high-amplitude, slow rhythms, indicative of a synchronization of neuronal activity in thalamocortical networks. Additionally, they uncouple brain areas in higher (gamma) frequency ranges possibly underlying conscious perception. It is currently thought that both effects may impair brain function by impeding proper information exchange between cortical areas. But what happens at the local network level? Local networks with strong excitatory interconnections may be more resilient towards global changes in brain rhythms, but depend heavily on locally projecting, inhibitory interneurons. As anesthetics bias cortical networks towards inhibition, we hypothesized that they may cause excessive synchrony and compromise information processing already on a small spatial scale. Using a recently introduced measure of signal independence, cross-approximate entropy (XApEn), we investigated to what degree anesthetics synchronized local cortical network activity. We recorded local field potentials (LFP) from the somatosensory cortex of three rats chronically implanted with multielectrode arrays and compared activity patterns under control (awake state) with those at increasing concentrations of isoflurane, enflurane and halothane.</p> <p>Results</p> <p>Cortical LFP signals were more synchronous, as expressed by XApEn, in the presence of anesthetics. Specifically, XApEn was a monotonously declining function of anesthetic concentration. Isoflurane and enflurane were indistinguishable; at a concentration of 1 MAC (the minimum alveolar concentration required to suppress movement in response to noxious stimuli in 50% of subjects) both volatile agents reduced XApEn by about 70%, whereas halothane was less potent (50% reduction).</p> <p>Conclusions</p> <p>The results suggest that anesthetics strongly diminish the independence of operation of local cortical neuronal populations, and that the quantification of these effects in terms of XApEn has a similar discriminatory power as changes of spontaneous action potential rates. Thus, XApEn of field potentials recorded from local cortical networks provides valuable information on the anesthetic state of the brain.</p

    Conveyance of texture signals along a rat whisker

    Get PDF
    Neuronal activities underlying a percept are constrained by the physics of sensory signals. In the tactile sense such constraints are frictional stick–slip events, occurring, amongst other vibrotactile features, when tactile sensors are in contact with objects. We reveal new biomechanical phenomena about the transmission of these microNewton forces at the tip of a rat’s whisker, where they occur, to the base where they engage primary afferents. Using high resolution videography and accurate measurement of axial and normal forces at the follicle, we show that the conical and curved rat whisker acts as a sign-converting amplification filter for moment to robustly engage primary afferents. Furthermore, we present a model based on geometrically nonlinear Cosserat rod theory and a friction model that recreates the observed whole-beam whisker dynamics. The model quantifies the relation between kinematics (positions and velocities) and dynamic variables (forces and moments). Thus, only videographic assessment of acceleration is required to estimate forces and moments measured by the primary afferents. Our study highlights how sensory systems deal with complex physical constraints of perceptual targets and sensors
    corecore