View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by EPub Bayreuth

On the benefits of using NP-hard problems in
Branch & Bound

Jorg Rambau and Cornelius Schwarz

University of Bayreuth, Bayreuth, Germany
{joerg.rambau, cornelius.schwarz}@uni-bayreuth.de

Summary. We present a Brand-and-Bound (B&B) method using combinato-
rial bounds for solving makespan minimization problems with sequence depen-
dent setup costs. As an application we present a laser source sharing problem
arising in car manufacturing.

1 Introduction

Some car manufactures use laser welding technology for the assembly
of car bodys. The equipment in a welding cell consists of a number of
welding robots and one or more laser sources, each of which can supply
more than one robot, but only one at a time. In usual settings only a
small fraction of the process time is spent with welding. This motivates
the idea of sharing laser sources between robots. Because production
cycle times must not be exceeded, the question is: “How many laser
sources are needed to process a given set of welding tasks with a given
set of robots in a given time?” To answer this question, we propose the
Laser Source Sharing Problem (LSP): Given a set of robots, a set of
welding tasks and a set of laser sources, find a scheduled tour (i.e., an
order of job start and end points together with start and end times)
for each welding robot and an assignment of robots to laser sources so
that

e all jobs are served,
e robots assigned to identical laser sources never weld simultaneously,
e the makespan is minimized.

This problem was introduced in [6], where a mixed-integer model for
the special case of fixed robot tours was developed. An extension to
integrate tour optimization was proposed in [8], but could not be solved
on real-world scales (3-6 robots, 1-3 sources, =~ 30 jobs).
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When we drop the resource sharing constraint, we obtain a vehicle
routing problem (VRP) with makespan minimization. Classical exact
approaches to solve large VRPs use column generation in mixed-integer
models, see [4] or [7]. However: The makespan objective yields large
integrality gaps in the Master Problem, and — because of few servers
for many jobs — the columns are dense.

We propose a combinatorial B&B algorithm based on partial sched-
ules. Such algorithms are common in project scheduling, and a key
problem is to find good lower bounds. Most lower bound constructions
in project scheduling are based on precedence constraints, for instance
critical paths calculations, see [2] or [3]. Since our problem does not
contain precedence constraints, we follow a different method.

Our contribution is a new B&B algorithm that solves NP-hard sub-
TSPs, which provide much better bounds than LP relaxations of com-
mon mixed-integer models. This is the first algorithm that can solve
industrial-scale LSP-instances to proven optimality. Since estimating
real robot driving times is a non trivial practical problem, all compu-
tations had to be done with artificial data, generated from real-world
welding plans, though. We are currently working on providing more
realistic data using KuKa SimPro. Moreover, collision avoidance is not
yet part of the algorithm but can and will be integrated later.

We believe that bounds from the solutions of NP-hard subproblems
may also be helpful for other makespan minimization problems.

2 Problem definition

Let R be a set of robots, J a set of jobs and L a set of laser sources.
Each robot r € R has a nullposition o,, where the tour has to start
and to end. Each job j € J has two end positions j,, jp. If the service
of a job starts at j, it has to finish at j;, and vice versa. Let p; be the
processing time of Job j € J. We denote the driving time of Robot r
from Positions ¢; to g; by d,(gi, q;). We also introduce a latency §; for
laser sources. When [ switches robots then there is a delay of 4;.

The task is to assign each j € J to a robot r € R, each robot r € R
to a laser source [ € L, and to create a scheduled tour for every robot
through all assigned jobs so that

e each job is assigned to exactly one robot,
e each robot is assigned to exactly one laser source,
e jobs assigned to robots sharing a laser source do not overlap in time.
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The cost of a scheduled tour is the time length, i.e., the time when the
robot finishes its tour at o,. The goal is to minimize the makespan,
which is the maximum over the tour costs. If we restrict to one robot
(the 1-server problem) and set for all jobs j, = jp, pj = 0 we get a TSP,
which is NP-hard. Thus, the laser sharing problem is also NP-hard.

The LSP can be interpreted as a wvehicle routing problem, where ve-
hicles correspond to robots. The task is to find a route for every vehicle
with minimum makespan subject to the resource constraints. From a
scheduling point of view we can interpret the robots as machines, result-
ing in a parallel-machine scheduling problem with sequence dependent
setup costs. The laser sources are resources with the condition that
each machine can only use a unique resource.

3 The algorithm

We already showed that the TSP is a special case of our problem. Since
TSPs of the usual scale of the LSP (around 30 jobs) are relatively easy
to solve nowadays, we can use TSPs as relaxations. In the next section
we will see that this yields better and faster bounds than LP relaxations
of mixed-integer-models of the LSP.

Assume that an assignment J : R — 27 of robots to jobs and an
assignment L : R — L of laser sources to robots are fixed. The resulting
problem is called LSP(J,L). If resource constraints are neglected, then
we can solve the 1-server problems separately by auxiliary TSPs, see
[5]. The duration (in the LSP) of any tour ¢ will be denoted by ().
The set of jobs served in Tour ¢ is denoted by J(t).

LSP(J,L) can now be solved as follows: Assume that for each robot
r we are given a partial scheduled tour ¢, ending in g, with duration
£(t,). Then no scheduled tour starting with ¢, visiting all jobs in J(r)
can finish earlier than the concatenation of ¢, and an optimal TSP tour
tISP (K, q,) starting at g,, visiting all jobs in Ky, := J(r) \ J(t,), and
ending at o,. Thus, a lower bound of LSP(J,L) with given scheduled
prefix tours (t,)rcg is given by max,cr(€(t,) + £(tF5F (K, , ¢r))). Now
we can solve LSP(d,L) using B&B with a node for each (t,),cr and
child nodes corresponding to all single-job extensions of a single t,.

We summarize the algorithm for LSP(3,L): For r € R, a set of
jobs K, and a start position ¢ we denote by TSP, (K, ¢q) a call to an
exact TSP oracle solving the 1-server problem of Robot r starting at
Position ¢, processing all jobs in K, and ending at o,. The set TT5F .=
{tTSP | r € R} stores the solutions of the 1-server problems. Similarly,
T := (t,)rer keeps a partial scheduled tour ¢, for every robot. We write
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u for the best upper bound and A for the lower bound of the current
node:

Algorithm 1 (Combinatorial Branch-and-Bound for LSP(J,L))

INPUT: Data of LSP(R,L)
OuTPUT: A set Topr with optimal scheduled tours {¢,},cr.

1. initialize: ¢, :=() for all r€ R
2. set p:=o00, Topr:=T:=(()
3.

4. return Topr

wcr /7 empty tours

CBB(1")

Procedure CBB(T) for T = (t;)rcr:

1.

w

for all r€ R,
set ¢, to the last position of ¢, or o, if t, = () and set

t, 5" == TSP, (3(r) \ J(tr), ar)

. set \:=maxyep({(t) +€(t?sp))

// length of partial scheduled tour t,. completed with t°F

. if A > pu return // pruning
. if J(t,) =3d(r) // all jobs are scheduled

a) complete the tours, i.e., append o, to t, V r€ R

b) set finew := max,crl(t,) // makespan of current solution

c) if ppew < p, set Topr = T, p = ppew // new best
solution

d) return

. for all re R, j S 3(7“) \ J(tr): (QStarthend) € {(javjb)a (jbaja)}

// run through all not yet scheduled jobs
a) append (QStart7Qend) to i

// Job j will be welded next from start tO Qend
b) set the start time of j to

max{£(t.) + 6 (qr, Gstart), srélfa{ii U(ts) + 55(5)}

L(s)=L(r)
// earliest time so that r can rTeach the job
// and so that the laser source is available again
c) CBB(T)
d) remove j from t,

Remark 1 At any time, we can pipe the tour information given by
the TSP call into a scheduling heuristic for fixed tours, e.qg., [6], which
gives us a feasible solution for the LSP. This primal information is not
available from LP-relazations.
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If the assignments J and L are prescribed, then we end up in a
cluster-first-schedule-second approach, which yields an optimal solu-
tion whenever we guess the “right” assignments. Since |R| and |L| are
small, we can enumerate all Ls. The number of potential job-robot as-
signments, however, is too big for a naive enumeration. However, we
can reduce this big set to a small set of candidates without missing
an optimal assignment. To this end, we branch over partial job-server
assignments. Whenever we reach a leaf, we run an heuristic scheduling
algorithm to generate a feasible solution using only one laser source.
The value of this solution provides an upper bound for LSP. The lower
bounds in the nodes are obtained by solving the 1-server TSPs for the
partially assigned jobs. Every leaf with a lower bound not worse than
the best global upper bound is a candidate. Finally, the LSP can now be
solved exactly by solving the LSP(g,L) for all candidate assignments.

4 Computational Results

We now compare the lower bounds to the LP relaxations of two mixed-
integer-models. The first one is an improved version of [8] which uses
linear ordering variables and many big-M constraints. Since good LP-
bounds in scheduling often come from time indexed variables we also
compare to a model based on a time expanded networks.

Our test instances consist of randomly selected jobs of a real welding
plan from a car manufacturer with three robots. Unfortunately, it is
a non trivial practical problem to get real robot driving times. We
used Euclidean distances on the 2D projection of the welding points
as an approximation. The comparison was done on a Intel Core 2 Duo
processor with 3 Ghz and 4 GB memory running Ubuntu Linux 8.04 in
64 bit mode. For the LP relaxations we used Ilog Cplex 11.1 (barrier
for time discrete networks and dual simplex for linear orderings). The
TSP relaxations were solved by concorde [1].

In the following table the lower bounds from various root relaxations
for typical instances of LSP(L,J) with given optimal assignments are
listed. The respective optima were calculated by our method. For non-
optimal assignments, LP-relaxations are no better.

lin. ordering time-exp. netw. TSP .
problem optimum
cpu/s value cpu/s  value cpu/s value
10jobs 0.08 24.7 24.5 247 0.02 24.7 24.7
16jobs 0.02 18.0 200.0 17.1 0.02 20.3 20.3
18jobs 0.09 20.0 282.8 19.1 0.02 227 22.8
20jobs 0.03 20.0 463.3 19.1 0.02 23.0 23.0

34jobs 0.11 247 2605.9 31.4 0.07 314 31.4
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We see that, for a use in our B&B, linear ordering relaxations are
too weak for the large instance and time expanded network relaxations
are way too slow. The TSP relaxation is the strongest and the fastest
throughout and was the only one with which the full B&B for the
34jobs-LSP could finish within a couple of hours.

5 Conclusions

We showed that NP-hard subproblems have the power to provide much
better bounds in B&B algorithm than classical LP based approaches.
The key lies inside the problem scale: A large-scale for the original
problem (here: LSP) may be small for the subproblem (here: TSP).
It remains to verify the method on real-world welding data and to
integrate collision avoidance in the B&B.
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