
How to avoid collisions in scheduling industrial
robots?

Jörg Rambau and Cornelius Schwarz

1 Introduction

If industrial robots are working in the same area, collisions must be avoided. Usually
this is done by hand: distribute the jobs among the robots in such a way that no
collision is possible. To the best of our knowledge, no automatic procedure is known
that automatically assigns jobs to robots and routes robots collision-free in one step.

Our new approach integrates collision avoidance into the optimization process.
To this end, we model a possible collision as a shared resource among the robots.
When Robot r moves into a critical area it tries to acquire all needed collision re-
sources. As long as there are other robots crossing the paths of r, at least one of
these resources is in use. This causes r to wait until the critical area is free.

We present our collision concept for the Laser Source Sharing Problem (LSP)
[Grötschel et al (2006), Rambau and Schwarz (2009)]: dispatch arc welding robots
(laser welding technology) with as few laser sources as possible. Here another re-
source plays an important role: Every robot needs to be connected to a laser source
supplying it with the necessary energy. While a laser source can switch between
robots, it can supply only one robot at a time. Because the main restriction in pro-
duction scheduling is the cycle time, our objective is to minimize the makespan.

The LSP without collision avoidance was studied in [Grötschel et al (2006)] for
fixed tours. In [Schneider (2006)], routing was integrated. Practical problem sizes
could be handled exactly for the first time in [Rambau and Schwarz (2009)], based
on bounds from combinatorial ATSP-relaxations.

Here, first, we integrate the handling of collisions directly in the optimization
algorithm and, second, we present a benchmark suite of realistic test data generated
with the industrial robot simulation software KuKa SimPro [KukaSimPro (2010)].
The new collision-aware algorithm outperforms other approaches on this benchmark
suite (including [Rambau and Schwarz (2009)] if there are at most three robots).

Jörg Rambau
University of Bayreuth, Bayreuth, Germany, e-mail: joerg.rambau@uni-bayreuth.de

Cornelius Schwarz
University of Bayreuth, Bayreuth, Germany e-mail: cornelius.schwarz@uni-bayreuth.de

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EPub Bayreuth

https://core.ac.uk/display/33805455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Jörg Rambau and Cornelius Schwarz

2 Problem definition – a new model for collisions

Let R be a set of robots, J a set of jobs and L a set of laser sources. Each robot r ∈ R
has a nullposition or, where the tour has to start and to end. Each job j ∈ J has two
end positions ja, jb. If the service of a job starts at ja it has to finish at jb, and vice
versa. With Q := {or | r ∈ R}∪{ ja, jb | j ∈ J} we refer to the set of all positions.
The driving time of Robot r from Positions qi to q j is denoted by δr(qi,q j). Job
processing times are special driving times δr(ja, jb), δr(jb, ja) depending on the
actual direction. Switching Laser Source l incurs a delay of δl .

We distinguish between two types of collisions: line-line collisions Cll ⊆ R×
Q×Q×R×Q×Q and line-point collisions Clp ⊆ R×Q×Q×R×Q. An entry
(r1, p1,q1,r2, p2,q2)∈Cll is interpreted as follows: There exists two start times t1, t2
with the following property: when ri starts at time ti to move from pi to qi, there will
be a collision between r1 and r2. Our (conservative) rule is: we do not allow these
two robot moves to overlap in time. A line-point collision (r1, p1,q1,r2, p2) ∈ Clp
means that Robot r1 moving from p1 to q2 will hit Robot r2 waiting at p2. Therefore,
Robot r1 is not allowed to perform this move until Robot r2 has left Position p2.

The task is to assign each j ∈ J to a robot r ∈ R, each robot r ∈ R to a laser source
l ∈ L, and to create a scheduled tour for every robot through all assigned jobs so that

• each job is assigned to exactly one robot,
• each robot is assigned to exactly one laser source,
• jobs assigned to robots sharing a laser source do not overlap in time,
• all robot moves are collision free.

The cost of a scheduled tour is the time length, i.e., the time when the robot
finishes its tour at or. The goal is to minimize the makespan, which is the maximum
over the tour costs. If we restrict to one robot (the 1-server problem) and set for all
jobs ja = jb,δr(ja, jb) = δr(jb, ja) = 0 we get an ATSP, which is NP-hard. Thus,
the laser sharing problem is also NP-hard.

3 The algorithm – how to avoid collisions

Assume that an assignment J : R → 2J of robots to jobs is fixed. The result-
ing problem is called LSP-J. If resources are neglected, then we can solve all 1-
server problems separately: Let G = (V,A) be a complete digraph with node set
V := {or}∪{ ja, jb | j ∈ J(r)}. To force the processing of Job j, we introduce a new
vertex jc between ja and jb. This way we end up with an ATSP which can be solved
by any exact solver, for instance [Fischetti et al (2003)].

We will denote by tLSP-r
r (K,q) := LSP-rr(K,q) a call to an exact algorithm solv-

ing the one server problem for Robot r starting at position q, processing all jobs in
set K and ending at or. The resulting tour is saved in tLSP-r

r (K,q).
Tuchscherer et al. [Grötschel et al (2006)] proposed a mixed integer model for

the case where in advance the tours tr are known. We extend this model to handle

How to avoid collisions in scheduling industrial robots? 3

collisions as well: For each position q of tr, let the variable xq ≥ 0 denote the starting
time of the process at q. Depending on q this is either a welding or a driving task. For
each two positions q, p of different robots, define a variable yp,q ∈ {0,1} with the
meaning: p is started before q if and only if yp,q = 0. The variables ur,l ∈ {0,1} de-
scribe the assignments of robots to laser sources. This leads to the following mixed
integer model:

Problem 1 (LSP-T).

minz (1)

subject to

xq|tr |−1 +δr(q|tr |−1,or)≤ z ∀ r ∈ R (2)

xqi +δr(qi,qi+1)≤ xqi+1 ∀ r ∈ R, i = 1, . . . , |tr|−2 (3)

xpi +δr(pi, pi+1)− xq j ≤M(1− ypi,q j) ∀ r,s ∈ R,r 6= s,

i = 1, . . . , |tr|−1, j = 1, . . . , |ts|−1

(r, pi, pi+1,s,q j,q j+1) ∈Cll (4)

ypi,q j−1 − ypi,q j = 0 ∀ r,s ∈ R,r 6= s

i = 1, . . . , |tr|−1, j = 2, . . . , |ts|−1

(r, pi, pi+1,s,q j) ∈Clp (5)

yp,q + yq,p = 1 ∀ r,s ∈ R,s 6= r, p ∈ tr,q ∈ ts (6)

xpi +δr(pi, pi+1)+δ − xq j ≤M(3−ul,r ∀ r,s ∈ R,r 6= s,

−ul,s− ypi,q j) i = 1, . . . , |tr|−1, j = 1, . . . , |ts|−1,

j, i mod 2 = 0, ∀ l ∈ L (7)

∑
l∈L

ul,r = 1 ∀ l ∈ L (8)

x≥ 0 (9)

z≥ 0 (10)

yp,q ∈ 0,1 ∀ r,s ∈ R,r 6= s, p ∈ tr,q ∈ ts (11)

Line-line collisions are handled with the big-M constraint (4). Whenever the task
starting at p and the one starting at q are in conflict then the first one has to finish
before the other one can start. Due to (6) one task is always marked as the first one.

If (r, pi, pi+1,s,q j) is a line-point collision then s has to leave q j before r starts at
pi or to enter q j after r reached pi+1. This is handled in (5).

Let tr be a tour for Robot r, J(tr) the jobs processed in tr, and `(tr) the time length
then for every given tour set T := (tr)r∈R we can solve LSP-T with a mixed integer
solver and obtain an optimal collision free solution. Indeed, this is the part where
collisions are handled within the following branch-and-bound algorithm: Let tr be
a partial tour, i. e., J(tr) (J−1(r), then an optimal collision free scheduling of T
yields a lower bound for every extension of T to a feasible solution of LSP-J. Given
an estimate τr how long Robot r needs at least for processing all remaining jobs
and returning home when starting at the end position qr of tr we can strengthen this
bound by temporally replacing δr(qr,or) := τr. With T LSP-T(T,τ) := LSP-T(T,τ)

4 Jörg Rambau and Cornelius Schwarz

we will denote a call to an exact solver storing the optimal schedule of LSP-T in
T LSP-T(T,τ).

We use τr := `
(
tLSP-r
r (Kr,qr)

)
with Kr := J−1(r) \ J(tr). This can be interpreted

as completing the tour in an optimal manner relaxing the resource constraints. Now
we can solve LSP-J using B&B with a node for each (tr)r∈R and child nodes corre-
sponding to all single-job extensions of a single tr.

We summarize the algorithm for LSP-J: For r ∈ R, T := (tr)r∈R keeps a partial
tour tr for every robot. We write µ for the best upper bound and λ for the lower
bound of the current node:

Algorithm 1 (Combinatorial Branch-and-Bound for LSP-J)
INPUT: Data of LSP-J

OUTPUT: A set TOPT with optimal scheduled tours (tr)r∈R.

1. initialize: tr := () for all r ∈ R
2. set µ := ∞, TOPT := T :=

(
()
)

r∈R // empty tours
3. CBB(T)
4. return TOPT

Procedure CBB(T) for T = (tr)r∈R:

1. for all r ∈ R,
set qr to the last position of tr or or if tr = ()
set Kr := J(r)\ J(tr)
calculate tLSP-r

r (Kr,qr) := LSP-rr(Kr,qr),τr := `(tLSP-r
r (Kr,qr))

2. set τ := (τr)r∈R and calculate
T LSP-T(T,τ) := LSP-T(T,τ),
λ := `(T LSP-T(T,τ)) // lower bound

3. if λ > µ return // pruning
4. if J(tr) = J(r) for all r ∈ R // all jobs are ordered

a. complete the tours, i.e., append or to tr ∀ r ∈ R
b. evaluate the current solution:

set τr := δr(qr,or), r ∈ R, τ := (τr)r∈R
calculate Tnew := LSP-T(T,τ)

c. if `(Tnew)< µ, set TOPT := Tnew, µ := `(Tnew) // new best solution
d. return

5. choose r ∈ R with Kr 6= /0
6. for all j ∈ Kr, (qstart,qend) ∈ {(ja, jb),(jb, ja)} // iterate over unscheduled jobs

a. append (qstart,qend) to tr // Job j is welded next from qstart to qend
b. CBB(T) // recurse
c. remove (qstart,qend) from tr // backtrack

Remark 1 In [Rambau and Schwarz (2009)] we proposed a similar algorithm where
collision avoidance had not been taken into account. In the branching step a job to
be processed next by the laser source was chosen. Our new algorithm only selects
the next job on some robot. So we reduced the search tree at the costs of solving an
additional MIP at each iteration. This reduced running times by up to 90%.

It remains to find the assignment J of an optimal solution. We reduce the number
of all possible assignments to a usual small set of promising ones that must contain
an optimal one and enumerate. See [Rambau and Schwarz (2009)] for details.

How to avoid collisions in scheduling industrial robots? 5

4 Computational Results on Realistic Data

In a first step we compare our algorithm to four mixed integer models of LSP: The
linear ordering based model of Schneider [Schneider (2006)], a variation of it with
fewer big-M constraints, a network model with nodes (r, j,d,k, l) with the meaning:
Job j is processed by Robot r in Direction d as the k-th job of Laser Source l, and a
time-space network model, as often used for column generation methods.

We generated our testdata using the robot simulation software KuKa Sim Pro 2.0
[KukaSimPro (2010)]. In order to compare with the time space network model, all
distances have been rounded with precision 10−1. None of the MIP models can take
care of collision avoidance. For a fair comparison, we ran two version of our branch-
and-bound algorithm: with collisions ignored (CBB) and with collision avoidance
CBB(coll). Figure 1 shows the known gaps of 40 instances with 2 and 4 robots. All

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35 40

g
a

p
 i
n

 %

Number of jobs

LSP-J known gaps 2 robots, 1 laser source after 1 h

Linearorder
Linearorder variant

Flowmodel
Timespacenetwork

CBB
CBB(coll)

(a) Two robots

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30 35 40

g
a

p
 i
n

 %

Number of jobs

LSP-J known gaps 4 robots, 1 laser source after 1 h

Linearorder
Linearorder variant

Flowmodel
Timespacenetwork

CBB
CBB(coll)

(b) Four robots

Fig. 1: Gaps achieved by the algorithms for LSP-J after 1h

calculations were performed on an Intel Xeon E 5410 cpu, 2.33Ghz, 64 GB RAM,
ubuntu linux 8.04, and cplex 12.1 (default options + barrier for root LPs).

In the 2-robot case all mixed integer models could be solved for up to 8 jobs to
optimality. For more robots the gap increases until cplex was not able to find any
primal solution. This is the case at about 23 jobs. With 4 robots the models seems to
perform better but take into account that 40 jobs assigned to 4 robots means every
robot has only to do about 10 jobs. The combinatorial branch-and-bound method
was able to solve up to 20 jobs to optimality in 1 h and obtained small gaps for all
bigger instances. This remains true also with collision handling.

One reason for the good performance of our code is the dualbound. Figure 2
compares our dualbound obtained by solving an LSP-r for every robot with the root
LP relaxation of the mixed integer models. Solving LSP-r provides the strongest
dual bounds in the shortest computation times.

6 Jörg Rambau and Cornelius Schwarz

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40

d
u

a
lb

o
u

n
d

 f
o

r
m

a
k
e

s
p

a
n

Number of jobs

LSP-J Dualbounds 2 robots, 1 laser source

Linearorder
Linearorder variant

Flowmodel
Timespacenetwork

LSP-R
Primal Bound

(a) Dualbounds

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20 25 30 35 40

ti
m

e
 i
n

 s
e

c

Number of jobs

LSP-J solving times for dualbounds 2 robots, 1 laser source

Linearorder
Linearorder variant

Flowmodel
Timespacenetwork

LSP-R

(b) Computation times

Fig. 2: Dualbounds of the algorithms in root node (two robots, one laser source)

5 Conclusions

We have shown that the successful combinatorial branch and bound technique in
[Rambau and Schwarz (2009)] using lower-bounds by solving NP-hard but small
subproblems remains successful when collisions are to be avoided. We verified this
on a realistic benchmark suite created with industry standard simulation software.
Whereas it is quite intricate to even incorporate both collision avoidance and laser
source sharing into the competing models based on LP-relaxations for makespan
minimization, our branch-and-bound algorithm based on combinatorial relaxations
is able to solve the full problem for industrial scales in reasonable time.

References

[Fischetti et al (2003)] Fischetti M, Lodi A, Toth P, (2003) Solving real-world ATSP instances by
branch-and-cut. Jünger, Michael (ed.) et al., Combinatorial optimization - Eureka, you shrink.
Papers dedicated to Jack Edmonds. 5th international workshop, Aussois, France, March 5-9,
2001. Revised papers. Berlin: Springer. Lect. Notes Comput. Sci. 2570, 64-77 (2003).

[Grötschel et al (2006)] Grötschel M, Hinrichs H, Schröer K, Tuchscherer A, (2006) Ein
gemischt-ganzzahliges lineares Optimierungsproblem für ein Laserschweißproblem im
Karosseriebau. Zeitschrift für wissenschaftlichen Fabrikbetrieb 5:260–264

[KukaSimPro (2010)] KukaSimPro, (2010) KuKa SimPro 2.0. KuKa, information available 1

[Rambau and Schwarz (2009)] Rambau J, Schwarz C, (2009) On the benefits of using NP-hard
problems in branch & bound. In: Operations Research Proceedings 2008, Springer, pp 463–
468

[Schneider (2006)] Schneider T, (2006) Ressourcenbeschränktes Projektscheduling zur opti-
mierten Auslastung von Laserquellen im Automobilkarosseriebau. Diplomarbeit, University
of Bayreuth

1 http://www.kuka-robotics.com/en/products/software/kuka sim

