8 research outputs found

    An NF-κB - EphrinA5-Dependent Communication between NG2+ Interstitial Cells and Myoblasts Promotes Muscle Growth in Neonates

    Get PDF
    SummarySkeletal muscle growth immediately following birth is critical for proper body posture and locomotion. However, compared with embryogenesis and adulthood, the processes regulating the maturation of neonatal muscles is considerably less clear. Studies in the 1960s predicted that neonatal muscle growth results from nuclear accretion of myoblasts preferentially at the tips of myofibers. Remarkably, little information has been added since then to resolve how myoblasts migrate to the ends of fibers. Here, we provide insight into this process by revealing a unique NF-κB-dependent communication between NG2+ interstitial cells and myoblasts. NF-κB in NG2+ cells promotes myoblast migration to the tips of myofibers through cell-cell contact. This occurs through expression of ephrinA5 from NG2+ cells, which we further deduce is an NF-κB target gene. Together, these results suggest that NF-κB plays an important role in the development of newborn muscles to ensure proper myoblast migration for fiber growth

    Gene expression in wild-type and MyoD-null satellite cells: regulation of activation, proliferation, and myogenesis

    Get PDF
    Regeneration is the process of renewal or repair of damaged cells and tissue. In skeletal muscle, regeneration is accomplished by satellite cells, which are rare, mononucleate, mitotically quiescent myogenic precursor cells normally present in undamaged muscle tissue. When stimulated by injury, overuse, or disease, satellite cells will become activated to proliferate and form a pool of replacement myoblasts which will differentiate to replace necrotic muscle fibers. These cells may also have the quality of self-renewal associated with stem cells. Due mainly to technical difficulties caused by their rarity, difficulty of isolation, and lack of identifying markers, satellite cells have not been as well studied as other myogenic cells. Here I present work in which I establish a reliable means of isolating and culturing mouse satellite cells resident on single explanted myofibers; a molecular marker for satellite cells which also yields information about their mechanism of activation, and a method of multiplex single-cell RT-PCR which allows simultaneous detection of six genes from a single satellite cell. Using these techniques, I have determined the temporal coexpression pattern of the four myogenic regulatory factors (MRFs) in single activated satellite cells over the first four days of a regeneration response in vitro. I have also assayed satellite cell cDNA pools for expression of genes important in regulating myogenesis, cell cycling, and cell fate decisions in other myogenic lineages. Finally, I have performed these analyses on MyoD-null satellite cells, which are differentiation-deficient in vivo, and present possible mechanisms for this based on gene expression; this analysis also suggested a potential marker for activated satellite cells which will return to the reserve satellite cell population and may act as myogenic stem cells

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore