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Abstract 

Regeneration is the process of renewal or repair of damaged cells and tissue. In 

skeletal muscle, regeneration is accomplished by satellite cells, which are rare, 

mononucleate, mitotically quiescent myogenic precursor cells normally present in 

undamaged muscle tissue. When stimulated by injury, overuse, or disease, satellite cells 

will become activated to proliferate and form a pool of replacement myoblasts which will 

differentiate to replace necrotic muscle fibers. These cells may also have the quality of 

self-renewal associated with stem cells. Due mainly to technical difficulties caused by 

their rarity, difficulty of isolation, and lack of identifying markers, satellite cells have not 

been as well studied as other myogenic cells. Here I present work in which I establish a 

reliable means of isolating and culturing mouse satellite cells resident on single explanted 

myofibers; a molecular marker for satellite cells which also yields information about their 

mechanism of activation, and a method of multiplex single-cell RT-PCR which allows 

simultaneous detection of six genes from a single satellite cell. Using these techniques, I 

have determined the temporal coexpression pattern of the four myogenic regulatory 

factors (MRFs) in single activated satellite cells over the first four days of a regeneration 

response in vitro. I have also assayed satellite cell cDNA pools for expression of genes 

important in regulating myogenesis, cell cycling, and cell fate decisions in other 

myogenic lineages. Finally, I have performed these analyses on MyoD-null satellite 

cells, which are differentiation-deficient in vivo, and present possible mechanisms for 

this based on gene expression; this analysis also suggested a potential marker for 

activated satellite cells which will return to the reserve satellite cell population and may act 

as myogenic stem cells. 
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Introduction 

Skeletal muscle satellite cells and muscle 
regeneration 
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Regeneration is the process by which tissues or organs replace themselves when 

cells become senescent, worn, or damaged. It may be continuous or sporadic, and 

replacement of old cells with new may take place on the order of days or years. Often, 

the processes of growth and renewal are carried out constitutively by the same cells 

which will, in the case of damage or other stimuli requiring a large-scale and rapid 

response, be induced to mount a more extreme regeneration response. Determined cells 

capable of participating in these activities fall into several types. In some tissues, such as 

liver, terminal differentiation does not preclude further proliferation, and cells which will 

divide very slowly when maintenance is all that is required are also capable of rapid and 

extensive proliferation in the case of damage, necrosis, or partial ablation. In others, 

such as skin, marrow and gut ectoderm, withdrawal from the cell cycle is a required 

component of terminal differentiation. These tissues maintain nondifferentiating, 

proliferative 'stem' cells which will supply the population with replacement cells as 

existing cells age and are discarded, and will accelerate this process when stimulated by 

outside factors such as injury or infection which require more rapid replacement. 

The mechanisms involved in the maintenance of normal tissue and the repair of 

damaged tissue, even when carried out by the same cells, are often divergent. A repair 

and regeneration response usually requires stimulation with a constellation of growth 

factors, cytokines, and other signaling molecules to be activated; these signals may 

emanate from the damaged cells themselves or from other cell types which are attracted to 

the wound site. When properly stimulated, stem cells which were not proliferating will 

become activated to do so, and in tissues where stem cells are already proliferating they 

will accelerate their division and, in some cases, change the type of cell produced. 

This thesis will report on muscle satellite cells, which are normally quiescent stem 

cells resident in mature skeletal muscle. When muscle tissue is damaged by trauma or 

disease, satellite cells become activated to proliferate and form a pool of replacement 

myoblasts, which will contribute to repair and regeneration of the damaged tissue. Many 
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aspects of satellite cell biology were unclear when I began this work, due in large part to 

technical difficulties in their isolation and purification. Here I will report advances which 

permitted analysis of gene expression in single satellite cells over the timecourse of a 

regeneration response in culture. The results of this analysis yielded a series of molecular 

'snapshots' of gene expression, which taken together form a framework molecular 

characterization of these cells which suggests possible mechanisms for key processes 

such as activation, proliferation, differentiation, and renewal. 

Brief review of skeletal myogenesis in the embryo 

In studies of avian embryos, it was determined that skeletal muscles of the trunk 

and limbs derive from cells of the paraxial mesoderm which lie on either side of the 

neural tube (reviewed in Watler and Christ, 1992). As embryogenesis proceeds, these 

cells assemble into regular, sequential epithelial spheres (somites) which form and mature 

in a rostral-to-caudal progression (reviewed in Christ and Ordahl, 1995). Cells of the 

epithelial somites are initially unspecified as to their eventual fate, but under the influence 

of a variety of signals emanating from the axial structures (notochord and neural tube) as 

well as the overlying ectoderm and lateral mesoderm, they become subdivided. The 

dermomyotome, which forms in the dorsolateral half, remains epithelial and will 

eventually give rise to skin and muscle, and the sclerotome, which forms in the 

ventromedial half, becomes mesenchymal and will eventually contribute to bone and 

cartilage. Cells of the dermomyotome then delaminate ventrally to form the myotome, 

which will form muscle, and the remaining structure is the dermotome, which will form 

the dermis (reviewed in Tajbakhsh and Cossu, 1997; Lassar and Munsterberg, 1996). 

Myogenic patterning in the somite is dependent on both the signaling molecules 

available locally and a cell's ability to respond. Thus, somitogenesis and myogenic 

specification may be perturbed by altering either the local signaling environment or the 

cell positioned to receive it. Experiments done in avian embryos demonstrate that Sonic 

hedgehog, Wnts, noggin, BMP4, and FGF5 all influence cell fate in the developing 
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somite (reviewed in Tajbakhsh and Cossu, 1997). Additionally, the fate of somitic cells 

can be altered by moving the somite into a new position relative to the sources of these 

signals (Christ et al., 1992). This plasticity is progressively lost as development 

proceeds (reviewed in Christ and Ordahl, 1995) 

The myotome itself is a positionally determined structure, and is 

compartmentalized by signals from surrounding tissues. Based on somite rotation and 

transplantation experiments done in chick-quail chimeras, it was determined that the 

myotome contains two distinct populations of myogenic precursor cells, and that while 

cell fate specification is initially plastic it later becomes fixed in most cells (Ordahl and 

LeDouarin, 1992). Myogenic precursor cells of the medial somite will differentiate 

within the somite and form the differentiated myotome. These myofibers are 

mononucleate and are formed as cells delaminate from the rostral edge of the dorsomedial 

lip of the dermomyotome and traverse the somite longitudinally; they are thought to 

contribute to future epaxial (intervertebral and paraspinal) muscles (reviewed in Christ 

and Ordahl, 1995). The myogenic precursors resident in the lateral half of the somite, 

however, will not differentiate but will instead delaminate from the lateral edge of the 

dermomyotome and migrate ventrally and laterally. When these cells reach their 

destination, they will then differentiate into hypaxial muscles (muscles of the limbs and 

body wall) (Ordahl and LeDouarin, 1992). 

These two populations of myogenic cells in the somite also differ in their 

expression of muscle-specific genes. The muscle-specific basic-helix-Ioop-helix 

transcription factors MyoD, myf5, myogenin, and MRF4 are considered to be "master 

regulatory genes" for myogenesis, in part because forced expression of anyone in many 

nonmuscle cell types will serve to upregulate expression of all four and initiate the entire 

myogenic program (reviewed in Weintraub, 1993). These factors, in heterodimers 

formed with ubiquitous bHLH proteins, bind to a common consensus sequence 

(CANNTG, or E-box) and are required for transcription of many muscle-specific genes 
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(reviewed in Molkentin and Olson, 1996; Yun and Wold, 1996). While these proteins 

are very similar in structure, bind to the same core concensus sequence, and have similar 

effects in cell culture experiments, in vivo their functions appear to be distinct and only 

partially redundant. 

Myf5 is the first myogenic regulatory factor (MRF) detected in the mouse 

embryo; it is expressed in myogenic precursor cells of the medial somite which will form 

the differentiated myotome and epaxial muscles of the trunk (Ott et al., 1991). These 

cells then begin to express myogenin as they terminally differentiate (Sassoon et aI., 

1989) and later express MRF4 and MyoD (reviewed in Ontell et al., 1995). The cells of 

the lateral myotome, which will form hypaxial musculature, however, first express 

MyoD (Smith et al., 1994). These differences in expression pattern between the two 

myogenic compartments in the somites led to speculation that either myf5 or MyoD is 

required for myogenic specification in general, and that myf5 is specifically required for 

presumptive epaxial myogenic precursor cells, while MyoD is specifically required by the 

presumptive hypaxial population. This was supported by evidence that deletion of either 

MyoD or myf5 led to upregulation and expansion of expression of the other in 

developing somites (Braun et al., 1994; Rudnicki et al., 1992). Presumably this is due to 

compensation by one population of myoblasts (epaxial in MyoD-/-, hypaxial in myf5-/-) 

for the other by expanding and repopulating the cellular compartment of the failed 

population. In addition, animals homozygous for deletion of both genes fail to specify 

myoblasts (Rudnicki et al., 1993). Thus myf5 and MyoD are considered to be lineage

specific determination factors during somitic myogenesis. 

Mice lacking the product of the myogenin gene, which is expressed by cells 

which have already expressed either MyoD or myf5 or both, successfully specified 

myoblasts which proliferated and migrated as they should, but which are unable to 

differentiate in vivo (Nabeshima et al., 1993; Hasty et al., 1993). This result, along with 

association of myogenin expression in differentiating myoblasts in vivo and upregulation 
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of myogenin in tissue cultures upon differentiation, led to the classification of myogenin 

as a differentiation factor. Based on deletion studies, MRF4 does not appear to be strictly 

required for myogenic differentiation in the embryo (Patapoutian et ai., 1995; Zhang et 

al., 1995). However, based on its expression patterns during myogenesis in vivo and in 

vitro and on its impact in combination with MyoD, it is also calssed with myogenin as a 

differentiation factor. 

Satellite cells are responsible for skeletal muscle regeneration 

While the epaxial, hypaxial, and limb muscle lineages have been extremely well

studied and characterized, and the fourth myogenic lineage (that of the head and neck, 

which forms from unsegmented paraxial mesoderm rostral of the first somite (Couly et 

ai., 1992) and will not be further discussed here) has been the subject of some 

embryological and molecular studies, there exists a potential fifth myogenic lineage about 

which a great deal less is known. Satellite cells are mitotically quiescent, mononucleate 

myogenic precursor cells normally present in adult muscle. They were first identified by 

electron microscopy as mononucleate cells associated with the periphery of Xenopus 

muscles (hence the name satellite cells) (Mauro, 1961). Prior to this time, the role of 

mononucleate myoblasts in regeneration had been recognized, however their origin and 

character were unknown (reviewed in Bischoff, 1994). It has since been determined that 

satellite cells are activated by local muscle damage due to disease, acute trauma, or 

possibly overuse, proliferate extensively to form a pool of replacement myoblasts which 

differentiate to replace the damaged myofibers, and may have a 'stem cell' -like ability to 

generate both differentiating and reserve satellite cell progeny (reviewed in Bischoff, 

1994). 

Major questions in the satellite cell field are their embryonic origin and lineage 

history, including how they are related to myocytes which form the regular musculature 

and whether satellites comprise a distinct lineage or are simply a remnant of postnatal 

myogenesis; the mechanism(s) by which they are committed to the satellite lineage and 
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become quiescent rather than differentiating during development; how they become 

activated by local tissue damage to mount a regeneration response; how the satellite cell 

myogenic program resembles or differs from the better-known embryonic programs; how 

a response, once initiated, is maintained and amplified until the damaged tissue has been 

replaced; what goes wrong when satellite cells are unable to fulfill their function; and how 

the reserve population of satellite cells which will re-enter the quiescent state is 

determined. In this brief review I will address these questions as they stood when I 

began, and discuss advances made by myself and others towards their resolution. 

What is the embryonic origin of satellite cells? 

Opinions on whether or not satellite cells are considered to comprise a separate 

embryonic lineage tend to differ based on the system in which the work is being done 

(avian or mammalian) as well as the working definition of what constitutes a satellite cell. 

Based in part on differential resistance to certain phorbol esters and differential 

expression of acetylcholine-handling proteins and in part on the identification of 

myofiber-associated mononucleate cells during histological analysis, some workers 

believe that satellite cells arise as a distinct fetal lineage at about day 17 of embryonic 

development in the mouse (reviewed in Bischoff, 1994). Using this definition of satellite 

cells, these cells proliferate extensively during late fetal and postnatal development and 

are responsible for postnatal muscle growth during secondary myogenesis. By 

approximately three weeks after birth in the mouse, this proliferation appears to slow 

considerably, and the first satellite cells with heterochromatic nuclei (a characteristic of 

quiescent satellite cells in the adult) appear (reviewed in Bischoff, 1994). This view of 

satellite cells as a separate lineage is widely-held by researchers using avian embryos, 

based upon differential expression of certain structural proteins (Hartley et al., 1992; 

Feldman and Stockdale, 1992). 

Based purely on a functional definition, however, satellite cells are defined as 

quiescent myogenic precursor cells present in the adult which become activated in 
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response to muscle damage and carry out the myogenic regeneration program. Since no 

direct lineal relationship has been established between proliferating cells during secondary 

myogenesis and satellite cells of the adult, and since it is unclear if these cells are 

homogeneous in their ability to contribute to the later satellite population, many other 

workers in the field remain undecided concerning the conclusion that satellite cells are a 

separable embryonic lineage. It has been suggested (Schultz and McCormick, 1994) that 

satellite cells may arise as descendants of secondary myoblasts which, due to contact 

inhibition, depletion of growth factors, and possibly some intrinsic program fail to 

differentiate and enter a satellite state instead. The resolution of the status of satellite cells 

as a lineage, and the point at which they diverge from other myogenic cell types, may not 

be resolved until embryonic myogenic precursor cells of different ages are identified and 

labeled, and the resulting adult animals examined for satellite progeny of the marked 

cells. 

Very recently results have been published indicating that cells fitting the 

description of satellite cells reside in the bone marrow and can be induced to take part in 

muscle regeneration (Ferrari et aI., 1988), apparently accessing damaged muscle tissue 

through the circulation. This raises the questions of the embryonic origin of these cells, 

their myogenic commitment status, their relationship or identity with satellite cells 

resident in quiescent muscle, and their function (if any) in normal muscle regeneration. 

Are these cells related to (or do they conceivably give rise to) satellite cells resident in 

undamaged muscle, and are they a functional component of the regeneration machinery or 

merely a fluke of development? Compared to regeneration mediated by conventional 

resident satellite cells, the myogenesis of these marrow-derived cells is both significantly 

delayed and quantitatively much less robust. This suggests that, if they do possess a 

function in normal myogenesis, it is probably secondary to resident satelite cells. It could 

be that these cells constitute the replacement population of satellite cells which will reside 

in muscle which has been newly-formed using the entire population of satellite cells that 
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had present before the damage was incurred. However, this appears unlikely given that 

the majority of nuclei derived from the marrow population were located in differentiated 

fibers rather than at their periphery. Another possibility is that these cells are continually 

being produced in the marrow and released into the circulation at low levels, and that they 

constitute a slow but steady source of new satellite cells. Again, there is evidence that 

this may may not be the case based on the equivalent number of clonable satellite cells 

present in whole muscle after successive transplantations (Mong, 1988). A less 

interesting hypothesis is that these cells are determined myoblasts from the somite which, 

due to mismigration in the embryo, were transported to an enviroment (the stroma) in 

which they could survive but were not stimulated to divide or differentiate, and that in the 

course of an inflamatory response after muscle damage they were transported to a region 

where they could and did receive and respond to signals to differentiate. It will be 

interesting to follow this story and, when more data become available, re-evaluate the 

possible role of these apparently nonmuscle cells in muscle regeneration. 

How do quiescent satellite cells become activated? 

When this work was begun, many studies of the mitogenic properties of various 

growth factors for satellite cells had been done in myoblast cell lines or in mass cultures 

of primary (usually neonatal) myoblasts. While many factors such as fibroblast growth 

factors (FGFs), epidermal growth factors (EGFs), insulin-like growth factors (IGFs), 

and transforming growth-factor ~ (TGF~) could affect proliferation in activated satellite 

cells, no specific factor had been found which had the ability to activate quiescent satellite 

cells and cause them to proliferate. This could be accomplished by a saline extract of 

crushed muscle, however the active factor had not been purified to homogeneity 

(Bischoff, 1986). In recent years, due to work which will be presented here on the 

expression of the c-met receptor tyrosine kinase in satellite cells and converging work 

examining the c-met ligand hepatocyte growth factor/scatter factor (HGF/SF), it has been 

determined that HGF/SF is present in crushed muscle extract and capable of inducing 
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proliferation in quiescent satellite cells ill vitro and in vivo (Allen et al., 1995; Tatsumi et 

al., 1998), and that quiescent satellite cells express c-met and are therefore capable of 

responding to the activation signal (Cornelison and Wold, 1997). This strongly suggests 

that HGF/SF, transduced by c-met, mediates activation of quiescent satellite cells. 

How similar is satellite myogenesis to embryonic myogenesis? 

Once satellite cells become activated they, like embryonic myogenic precursor 

cells, begin to express myogenic regulatory factors (MRFs). Analysis of MRF 

expression has been done using various methods such as in situ hybridization (Grounds 

et al., 1992), RT -PCR of mass cultures (Smith et al., 1994), and immunohistochemistry 

of satellite cells on isolated muscle fibers (Yablonka-Reuveni and Rivera, 1994). These 

had established roughly similar timecourses for MRF expression in activated satellite 

cells, basically concluding that quiescent satellite cells express no MRFs, while MyoD 

expression begins in the first 24 hours after activation and is followed in the next 24 

hours by myf5, myogenin, and MRF4. These were important results and led to 

speculation that MyoD, because it is expressed first, might be uniquely required for 

satellite myogenesis. However, techniques such as in situ hybridization and 

immunohistochemistry, while they delivered single-cell resolution, could only be used to 

assay one or two genes at a time; and mass culture RT -PCR, while it allowed for the 

assay of many genes simultaneously, gave no measurement of heterogeneity within the 

cellular population. RNA collected from these cultures was also potentially contaminated 

by other cell types, which are endemic in satellite cell cultures. 

At the time I began this work, no reliable molecular marker existed for mouse 

satellite cells, and they were identified by expression of MRFs once they had become 

activated and entered myogenesis. This had major disadvantages due to the necessity of 

waiting until after regeneration was well underway before satellite cells could be 

identified, and because it was plausible (and I later demonstrated) that at any given time, 

some satellite cells will not express any of the MRFs. To overcome this technical 
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difficulty, I adapted the specialized technique of single fiber explant culture, in which 

myofibers are enzymatically isolated from adult muscle and cultured along with their 

resident satellite cells, to be used on multiple muscles of the mouse; previously it had 

been thought possible only with a very short foot muscle of the rat. The advantages of 

this technique are that it allows identification of satellite cells based on their morphology, 

and therefore does not rely on muscle-specific gene expression; because of the way 

satellite cells decorate the fibers it is also possible to observe many more satellite cells 

much more readily than would be possible even in thin serial sections. Using satellite cell 

fiber culture in conjunction with multiplex single-cell PCR, which permits analysis of 

mRNA expression for several genes to be obtained from the same cell, I examined the 

satellite cell myogenic program and determined the progression of MRF coexpression 

states it involves. Satellite cells were seen to have a unique program of MRF expression 

and progression, distinct from that of either of the embryonic lineages. This work is 

presented in Chapter 2. 

How are growth and differentiation balanced? 

Once an activation response has been successfully initiated, it must be maintained 

and modulated to provide balanced and continued proliferation and differentiation. This 

must be the result of the coordinated effects of positive and negative myogenic regulatory 

factors, growth factor signaling, cell cycle regulation, and cell fate choices. While a great 

deal of work has been done on the MRFs and growth factors/receptors, as mentioned 

earlier, no large-scale screen of genes which may regulate these processes had been done, 

especially in a population in which all cells analyzed were certifiably satellite cells. I 

therefore analyzed pools of satellite cell cDNA over the first four days in culture to 

determine which of several genes considered relevant to myogenic progression in other 

cell types are expressed in satellite cells. I found that, again, satellite cells possess a 

unique program of gene expression unlike those seen in embryonic or cultured 

myoblasts. With this data, it should be possible to inquire further into the mechanisms 
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governing promotion and balance of proliferation and differentiation in satellite cells. 

This work is presented in Chapter 3. 

What happens when satellite cells don't work? 

Satellite cells are of clinical relevance because of their involvement in muscle 

repair, as well as their apparent acquired inability to successfully regenerate muscle 

during the terminal phases of neuromuscular wasting disease such as Duchenne's 

muscular dystrophy and during senile muscle atrophy. Thus, factors leading to 

incompetence of satellite cells in regeneration, and possible accompanying changes or 

blocks in their myogenic program, are of great clinical as well as biological interest. Is 

satellite cell failure due to intrinsic defects in the cell population (such as a possible loss 

of competence after many activations or cell divisions), or to a lack in an essential 

external mediator of the satellite cell response, or both? 

A naturally-occurring mouse model for muscular dystrophy is the mdx mouse, 

which was found to have mutations in the dystrophin gene (Ryder-Cook et aI., 1988). 

However, unlike human patients, these mice show intense degeneration balanced by 

rapid regeneration from 3 weeks to 6 months of age, and thereafter are phenotypically 

normal (reviewed in Anderson et al., 1991). Therefore the mdx mouse, while it is a 

good model for muscle regeneration, is a poor one for the study of satellite cell 

deficiencies because the murine satellite cells successfully maintain a constant and 

vigorous regeneration response, sparing the affected mice both many symptoms 

experienced by human patients and the terminal acute phase of the disease. Mouse 

mutants which have been shown to have severe regenerative disorders lack MyoD 

(Megeney et al., 1996) and FGF6 (Floss et al., 1997); severely decreased expression of 

MyoD in FGF6-null mice suggests that both genes may be acting in the same pathway. 

Both lines have been characterized as having apparently normal phenotypes during 

development and postnatal life save for an inability to regenerate muscle due to satellite 
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cells which become activated and proliferate, but rarely terminally differentiate, thus 

linking satellite cell dysfunction to both extrinsic and intrinsic factors. 

When I assayed gene expression in single and pooled MyoD-null satellite cells as 

had previously been done for wild-type, the results suggested that the differention

deficient phenotype observed in MyoD-null mice may be due to failure to express the 

differentiation-promoting factor MRF4 and severely reduced expression of m-cadherin, a 

homotypic adhesion molecule which has been implicated in myoblast fusion and 

differentiation (Zeschnigk et aI., 1995). This work is presented in Chapter 4. 

Another model of satellite cell insufficiency is the muscle hypotrophy associated 

with aging in both mouse and humans. Presumably, these satellite cells have not 

experienced gene deletions leading to a regeneration defect and were once competent to 

mount a full regeneration response. What, then, causes their failure to fully recapitulate 

regeneration as it would be in a younger mouse? Possible clues to this come from an 

elegant study in which satellite cell populations from young or old mice were stimulated 

with crushed muscle extract (the best satellite cell mitogen known at the time) which was 

also derived from either young or old mice. It was found that, while extract from old 

muscles was weakly mitogenic for young satellite cells and was not at all mitogenic for 

old satellite cells, the extract made from young muscles promoted robust cell division in 

both young and old satellite cells, although young cells were still more responsive. The 

same results could be obtained by coculture of young and old satellite cells with 

differentiated myotubes from each source (Mezzogiorno et aI., 1993). These results 

imply that both extrinsic and intrinsic factors affect satellite cell function in senile muscle. 

What factor(s) mediate a return to quiescence? 

Finally, it is believed that a critical part of the satellite cell response is the 

specification either before or during regeneration of a subset of satellite cells which will 

contribute not to the nascent terminally differentiated muscle but to the satellite cells 

which will inhabit it. Data supporting this hypothesis are the observations that the 
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number of resident satellite cells in a given muscle is not reduced even following repeated 

cycles of activation, proliferation and differentiation (Mong, 1988) and that cells meeting 

the criteria for satellite 'stem' cells can be isolated from clones derived from single 

satellite cells in that these cells, when cloned and expanded, will also yield some stem

like cells (Baroffio et al., 1996; Morgan et al., 1994). Determination of which satellite 

cell progeny will retain or acquire "sternness" has been suggested to be stochastic and 

based on loss of growth factor receptors during slightly as symmetric divisions (Angello 

and Hauschka, 1996), but a more programmed mechanism remains a possibility. For 

these reasons, knowledge of which of the known molecular mediators of cellular 

asymmetry (such as genes of the Notch system) are expressed within the satellite cell 

population may be a key step in answering this question. 

Analysis of satellite cells from MyoD-null animals for a wide panel of genes 

yielded what may be an important clue about the return to quiescence after a regeneration 

response has ended. It had been suggested that MyoD-null satellite cells, unable to 

complete a regeneration response, would instead return to quiescence en masse (Megeney 

et al., 1996). Consistent with this hypothesis, I observed MyoD-null satellite cells 

apparently returning to a position beneath the basal lamina; cDNA from cell pools 

enriched for these cells expressed Msx-l, a gene which is usually detected only in very 

recently quiescent satellite cells. Msx-l is expressed by committed but nondifferentiating 

myoblasts in the embryo (Wang and Sassoon, 1995) and is thought to repress 

differentiation through its activity as a transcriptional inhibitor (Catron et al., 1996). 

Therefore, upregulation in activated satellite cells could conceivably be a molecular 

marker for cells that will renew the satellite pool. 
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Abstract 

Repair and regeneration of adult skeletal muscle are mediated by satellite cells. In 

healthy muscle these rare mononucleate muscle precursor cells are mitotically quiescent. 

Upon muscle injury or degeneration, members of this self-renewing pool are activated to 

proliferate and then differentiate. Here we analyzed in single satellite cells the expression 

of a set of regulatory genes that are candidates for causal roles in satellite cell activation, 

maturation and differentiation. Individual cells were identified as satellite cells and 

selected for analysis based on their physical association with single explanted myofibers 

or their position beneath the basal lamina in unperturbed muscle tissue. Using a 

multiplex single cell RT-PCR assay we simultaneously monitored expression of all four 

MyoD family regulators of muscle determination and differentiation (MRFs) together 

with two candidate markers of satellite cell identity, c-met and m-cadherin. By making 

these measurements on large numbers of individual cells during the timecourse of satellite 

cell activation, we were able to define which expression states (possible combinations of 

the six genes) were represented and to specify how the representation of each state 

changed with time. Activated satellite cells began to express either MyoD or myfS first 

among the MRFs; most cells then expressed both myf-S and MyoD simultaneously; 

myogenin came on later in cells expressing both MyoD and myfS; and many cells 

ultimately expressed all four MRFs simultaneously. The results for fiber-associated 

satellite cells from either predominantly fast or slow muscles were indistinguishable from 

each other. The c-met receptor tyrosine kinase was also monitored because it is a 

candidate for mediating activation of quiescent satellite cells (Allen et al., 1995), and 

because it might also be a candidate molecular marker for satellite cells. A significant 

difficulty in studying mouse satellite cells has been the absence of molecular markers that 

could identify them in the quiescent state before expression of MRFs or desmin and 

distinguish them from fibroblasts. We show here that c-met is expressed at both RNA 

and protein levels by all myofiber-associated satellite cells from the time of explant 
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through the course of activation, proliferation and differentiation. c-met was not detected 

in muscle derived fibroblasts or in other mono nucleate cells from healthy muscle 

explants. When compared directly with m-cadherin, which has previously been 

suggested as a marker for quiescent satellite cells, m-cadherin mRNA was detected only 

in a small subset of satellite cells at early times after myofiber explant. However, at late 

times following activation (by 96 hours in this fiber culture system), c-met and m

cadherin were uniformly co-expressed. From the individual satellite cell expression types 

observed, a model of the satellite cell population at rest and during the timecourse of 

activation was generated. 
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Introduction 

In adult mouse skeletal muscle the majority of myonuclei are located in syncytial 

myotubes that were formed by myoblast fusion during fetal and postnatal development. 

These myonuclei are terminally postmitotic. However, a small fraction of myonuclei are 

in mononucleate precursor cells called muscle satellite cells which are located between the 

basal lamina and sarcolemma of myofibers (Mauro, 1961), reviewed in (Bischoff, 1994). 

In healthy adult rodent muscle, satellite cells are mitotically quiescent and do not 

detectably express MRFs (MyoD family muscle regulatory factors) (Grounds et al., 

1992). When stimulated by damage to the muscle or by explant and culture 

manipulations, some fraction of satellite cells are activated to re-enter the cell cycle and/or 

to express myogenic regulatory factors. The resulting myoblasts subsequently 

differentiate and fuse to form new replacement myofibers (Bischoff, 1986a) reviewed in 

(Bischoff, 1994). 

Although all skeletal muscle regeneration in mammals is attributed to satellite 

cells, including recovery phases of neuromuscular wasting diseases, we presently have 

an incomplete picture of the molecular mechanisms involved in establishing and 

maintaining the quiescent state, regulating activation and subsequent muscle 

differentiation, and sustaining the satellite population through multiple rounds of 

regeneration. This is partly due to technical problems caused by satellite cell rarity within 

muscle tissue and associated difficulties with identifying them, especially in the quiescent 

state. For the mouse there are currently no reliable molecular markers that can 

prospectively identify resting satellite cells or activated cells that do not yct express MRFs 

or desmin. This work begins to address the problem by evaluating the expression of two 

candidate markers of satellite cell identity, m-cadherin and c-met, in sets of individual 

satellite cells during the course of activation and differentiation. 

Expression of c-met and m-cadherin is also relevant to muscle regeneration 

because of their postulated functions. c-met transduces mitogenic, migratory or 
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morphogenetic signals in a variety of nonmuscle tissues during development and wound 

healing in response to its ligand HGF/scatter factor (reviewed in (Matsumoto and 

Nakamura, 1996)Matsumoto and Nakamura, 1996). In muscle development HGF/c-met 

signaling is essential for proper emigration of muscle precursor cells of the axial lineage 

during embryogenesis (Bladt et al., 1995). And in a mass culture system, exogenous 

HGF accelerates cell proliferation of freshly isolated rat satellite cells, suggesting that it 

may be an activation factor in vivo (Allen et al., 1995). m-cadherin is a calcium 

dependent homophilic cell adhesion molecule that is expressed prominently during fetal 

myogenesis (Rose et ai., 1994). As the member of the cadherin family expressed 

predominately during skeletal myogenesis, it has been suggested that m-cadherin plays a 

significant role in alignment and fusion of myoblasts to form and expand developing 

myotubes (Donalies et al, 1991; Cifuentes-Diaz et al., 1995). It has also been detected in 

activated satellite cells during regenerative responses after muscle damage (Moore and 

Walsh, 1993; Irintchev et al., 1994.) 

Little is known about the nature and extent of cell to cell heterogeneity of gene 

expression in satellite cells at present, but at least two types can be hypothesized. First, 

some distinction is expected between satellite cells which will differentiate as myotubes 

and those which maintain the progenitor pool for subsequent rounds of regeneration. 

Second, satellite cells from muscles of different fiber types or of different embryonic 

sublineages may retain distinct identities. The emerging picture for skeletal muscle 

development during embryogenesis is that specific combinations of regulatory genes, 

rather than any single myogenic master regulator, are responsible for directing 

determination and differentiation (reviewed in Yun and Wold, 1996). Genetic analyses 

of knockout mice have established that the four members of the MRF family of 

transcription factors are individually and collectively important for muscle precursor 

development and for terminal differentiation (reviewed in (Olson and Klein, 1994; Yun 

and Wold, 1996)Olson and Klein, 1994). It is generally believed that the MRFs will 
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have similarly important functions in muscle regeneration, and evidence for a specific 

requirement for MyoD was recently reported for regeneration in dystrophic mdx mice 

(Megeney et ai., 1996). Prior studies have also shown that these regulators are not 

expressed detectably in unactivated satellite cells, but that all four are transcribed 

beginning at different times over the course of activation in mass cultures (Table 1 and 

references therein). However the combinatorics of MRF family expression at the single 

cell level remain only partly known for embryo or satellite cell populations. For the first 

time we could address this problem because satellite cells are physically identifiable by 

positional criteria in our fiber cultures and because they are experimentally accessible for 

single cell RNA analysis. Thus, co-expression of c-met, m-cadherin, myf-S, MyoD, 

myogenin and MRF4 mRNAs was measured in a large number of individual myofiber

associated satellite cells. From these data we were able to reconstruct the satellite cell 

population expression pattern as the sum of distinct individual expression patterns. The 

sets of expression types observed over time suggested a simple developmental model for 

MRFs during satellite cell activation and differentiation. 
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Myofibers from adult mice (> 100 days old) were isolated essentially as in (Bischoff, 

1986a), with these exceptions: Fibers were isolated from multiple muscles, including the 

anterior tibialis, soleus, and longissimus dorsi; in our hands it was not necessary to use 

only short, tendonous muscles. Dissected muscles were treated with 400 U/ml 

collagenase type I (Worthington) in PBS at 37° for 60 minutes. Muscle masses were not 

triturated, but were manually rocked before individual fibers were harvested with a fire

polished Pasteur pipette, preflushed with medium to prevent sticking. Fiber cultures were 

grown in DMEM supplemented with 10% equine serum (Hyclone), 5% chick embryo 

extract (Sigma), penicillin-streptomycin (Gibco), 2.5 J.lg/ml amphotericin B (Sigma) at 

37° in a humidified incubator at 5% C02. 10 J.lM BrdU (Boehringer) was supplied 

continuously in the medium to monitor proliferation history. Fresh individual fibers 

isolated in this way were up to 1.4 cm in length, averaging 5-7 mm and having 62 +/- 8.6 

myonuclei and 0.77 +/- 0.08 satellite cells per mm. To decrease possible contamination 

from non-satellite cell types which were carried from the isolation, after 24 and 48 hours 

of culture individual fibers were re-picked with a Pasteur pipette and transferred to a fresh 

dish of medium (by this time, most contaminant cells emigrate from the fibers, apparently 

due to higher affinity for the culture dish). To derive muscle fibroblast cultures, cells 

adhering to the dish after fibers are transferred away which appear to be fibroblasts are 

identified and surrounded with a cloning cylinder, then trypsinized and removed to a new 

dish and expanded. 

Marcaine treatment LivelDead staining 

To identify and harvest individual satellite cells immediately after fibers had been 

dissociated, fresh fiber preparations were treated with the myotoxic anesthetic Marcaine. 

The fibers and their satellite cells could then be stained with Live/Dead reagents 
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(Molecular Probes,) which consist of calcein AM, a fluorescent vital dye activated only in 

the cytoplasm of living, viable cells, and an ethidium homodimer, which stains the nuclei 

of dead cells. Marcaine treated fibers would hypercontract, and after treatment their 

cytoplasm could no longer activate calcein AM and their nuclei stained with the dead-cell 

reagent. Satellite cells are not affected by Marcaine treatment and can thus be identified by 

calcein AM staining. Fresh fiber preparations were treated with Marcaine (Winthrop; 

.05% in PBS) for 20-30 minutes at 25°, rinsed twice in PBS, and treated with 2).1M 

calcein AM (Molecular Probes) for 20 minutes at 25°. We note that the fibers in which 

Marcaine caused most extreme hypercontraction appear to be those with ends broken 

from the explant surgery. 

Single cell multiplex RT-PCR 

The design of the multiplex single cell RT -PCR protocol (Fig. 1) was derived 

from that of Kato et. al. (Kato et al., 1997), in which a patch-clamp pipette was used to 

harvest a sample of cell cytoplasm. We modified this procedure with the goal of 

maximizing and normalizing the amount of RNA obtained from each cell. Fibers were 

transferred to a dish of sterile, RNAase-free PBS immediately before harvest; collection 

pipettes were filled with RNAase-free PBS. The orifice of the micropipette was enlarged 

to be only slightly smaller than the circumference of a satellite cell, and the entire cell was 

collected into the micropipette. Each collected cell was used individually as substrate for 

reverse transcription with M-MLV RT using random primers (7.5 ).11 per cell RT mix 

containing Ix (2 ).11 5x) RT buffer (Boehringer), 40 mM (4 ).11 100 mM) DTT, 0.5 mM 

dNTPs (0.5 ).11 of 10 mM), 10 U (0.2 ).11) RNAase inhibitor (Boehringer), 200 ng 

Random Primers (0.4 ).11 of 500 ng/).11) (Boehringer), 0.4 ).11 DEPC water; keep mix on 

ice at all times. Add cells in approximately 2 ).11 of collection buffer; after all cells have 

been added to mix tubes, add 10 U (0.5 ).11) M-MLV RT (Boehringer) per tube for a final 

volume of 10 ).11; incubate at 37° for 1 hour). In some control reactions (specified in text 
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and figure legends) several individual cells were collected and then pooled for analysis of 

sensitivity and reproducibility. The entire cDNA reaction was then added to a PCR 

reaction containing an outside primer pair for each gene of interest (for 1.0 cell input, 50 

!ll PCR reaction containing Ix reaction buffer (Qiagen), 200 nmol dNTPs, 200 !lmol 

each outside primer, 2.5 U Taq polymerase (Qiagen); 35 cycles PCR at 60° annealing.) In 

reactions where more than four genes were monitored from a single cell, the cDNA 

reaction was first divided in half, and each half was then used in a 112 scale PCR reaction 

with primers corresponding to a subset of the genes to be assayed. All outside primer 

sets were designed to cross at least one intron, so that any products derived from 

unprocessed hnRNA or from genomic DNA could be distinguished from messenger 

RNA templates; this design feature is critical when using whole cells containing nuclei as 

the substrate. After the first round of PCR, the reaction was diluted I: 1000 into separate 

secondary PCR reactions, each of which contained a single set of primers positioned 

internal to the first set for one of the genes being tested. The second PCR reaction was 

then executed under the same protocol as the first. Products were analyzed on a 2% 

agarose gel; representative bands were sequenced to confirm identity. 

Primer pairs for GAPDH, c-met, and m-cadherin were written by eye; primers for 

MyoD, myogenin, myf-5 and MRF4 were selected using Lasergene (DNAStar, Madison 

WI.) All primer sets were screened using Lasergene for possible interference with each 

other, and then tested empirically alone and in combination with all primers that were to 

be used with in a given multiplex set. Outside primers used in the first PCR were: 

GAPDH: 5' GTG GCA AAG TGG AGA TTG TTG CC 3' forward, 5' GAT GAT GAC 

CCG TTT GGC TCC 3'reverse; 

c-met: 5' GAA TGT CGT CCT ACA CGG CC 3' forward, 5' CAC TAC ACA GTC 

AGG ACA CTG C 3' reverse; 

m-cadherin: 5' CCA CAA ACG CCT CCC CTA CCC ACT T 3' forward, 5' TCG TCG 

A TG CTG AAG AAC TCA GGG C 3' reverse; 
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MyoD: 5' GCC CGC GCT CCA ACT GCT CTG AT3' forward, 5' CCT ACG GTG 

GTG CGC CCT CTG C 3' reverse; 

myogenin: 5'GGG CCC CTG GAA GAA AAG 3' forward, 5 AGG AGG CGC TGT 

GGG AGT 3' reverse; 

myf-5: 5' TGC CAT CCG CTA CAT TGA GAG 3' forward, 5' CCG GGG TAG CAG 

GCT GTG AGT TG 3' reverse; 

MRF4: 5' CTG CGC GAA AGG AGG AGA CTA AAG 3' forward, 5' ATG GAA 

GAA AGG CGC TGA AGA CTG 3' reverse. 

Primers used for the second PCR's were: 

GAPDH 5' GTG GCA AAG TGG AGA TTG TTG CC 3' forward, 5' GAT GAT GAC 

CCG TTT GGC TCC 3'reverse; 

c-met: 5' GAA GGT ATC CGA ATT CAA GAC CGG 3' forward, 5' GAA CAT GCA 

GTG GAC CTC AGA CTG 3' reverse; 

m-cadherin: 5' ACA GCA GCT AGG CAG TGT CAT C 3' forward, 5' AAC CTG 

AGG GCT GCA TTG TCT GTC 3' reverse; 

MyoD: 5' CCC CGG CGG CAG AAT GGC TAC G 3' forward, 5' GGT CTG GGT 

TCC CTG TTC TGT GT 3' reverse; 

myogenin: 5' CCG TGG GCA TGT AAG GTG TG 3' forward, 5' TAG GCG CTC 

AAT GT A CTG GAT GG 3' reverse; 

myf-5: 5' GAG GGA ACA GGT GGA GAA CTA TTA 3' forward, 5' CGC TGG TCG 

CTG GAG AG 3' reverse; 

MRF4: 5' TGC GGA GTG CCA TCA GC 3' forward, 5' CTC CTC CTT CCT TAG 

CAG TT A TCA 3' reverse 

To determine the fidelity of the single-cell RT -PCR reaction when challenged with 

increasing numbers of primer sets or decreasing amounts of input cDNA or both, singly

harvested satellite cells were pooled prior to cDNA synthesis, reverse-transcribed, and 

single-cell equivalent aliquots of the resulting homogeneous pool of cDNA were 
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analyzed. When all six primer sets were used together, the reactions tended to fail 

regardless of the amount of input cDNA, but under the conditions used in this work 

highly consistent positive results were obtained using between 0.25 and 0.125 of a cell 

equivalent of input cDNA. 

Technical considerations for single-cell multiplex RT-PCR 

This technique has been optimized for sensitivity in order to enable detection of 

non-abundant transcripts from multiple regulatory genes. A significant trade-off is that 

the procedure intentionally operates outside the linear range of PCR and is therefore 

nonquantitative. A series of theoretical and technical considerations argue that reliable 

and meaningful quantitation (absolute RNA levels or even relative amounts of different 

transcripts) will not be possible by this approach and will require different techniques. It 

is also useful to recognize that different primer sets are differentially efficient so that 

empirical tests on positive samples are required for each new primer set. Moreover, 

primer compatibility for new multiplex combinations must also be tested on a case-by

case basis. Concordance tests such as those in Figure 6 and in Kato et al. (Kato et al. 

1997) provide a means to evaluate robustness of a given set of measurements. 

We believe that different cell types may require significantly different sample 

collection techniques. Specifically, we note that attempts to collect cytoplasm from 

mature myofibers has so far been unsuccessful because of difficulty in recovering sample 

from the highly structured "cytosol." Also, the variation we used here in which whole 

satellite cells are collected may not be possible when harvesting cells from whole 

embryos or from more intact tissues, and in these cases the use of cytosol-specific 

collection (Kato et ai, 1997) may be preferable. 

Protein blotting and immune reagent characterization 
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Western blotting was performed on protein extracts from pooled satellite cells 

derived from our fiber cultures. The anti mouse c-met polyclonal rabbit serum (Santa 

Cruz, cat# sc-162) specifically detected a single band of appropriate size for c-met (Fig 

2). As anticipated, preincubation of the antibody with the immunizing peptide eliminated 

this band. 

Immunohistochemistry 

Cultured myofibers were fixed in fresh 4% paraformaldehyde for 20' at 25°, 

washed 3x with PBS, permeablized in 1 % NP-40 5' at 20°, washed 3x with PBS, 

blocked in 10% normal goat serum, incubated overnight at 4° with primary antibodies, 

washed 3x with PBS, incubated 1 hour at 25° with secondary antibodies, washed 3x with 

PBS and mounted in Vectashield (Vector.) Fibers were photographed on a Nikon 

Optiphot-2 with UFX camera attachment or imaged using a Bio-Rad 600 confocal 

microscope with false color added in Photoshop (Adobe.) 

10 ).1m cryotome sections of unmanipulated quadriceps muscle were double-

stained for c-met and laminin sequentially by fixing, blocking and incubating with rabbit 

anti-met antibody as above, followed by incubation with monovalent goat anti-rabbit Fab

FITC conjugate at (Jackson) at 1 :50 for 2 hours. Sections were washed in PBS and 

incubated with rabbit anti-Iaminin (Sigma) for 4 hours followed by anti-rabbit TRITC and 

mounted in Vectashield. The sections were then photographed or imaged as above. 

Primary antibodies and dilutions used were: rabbit anti-m-met (Santa Cruz) at 

1 :50; F5D (mouse anti-myogenin, Wright et aI., described in Cusella-DeAngelis et al., 

1992) at 1 :5; NCL-MyoD 1 (mouse, Novocastra Labs) at 1: 10; mouse anti-BrdU 

(Boehringer Mannheim) at 1: 10; rabbit anti-laminin (Sigma) at 1 :250. Secondary 

antibodies were raised in donkey (Jackson Immunochemicals) and, except for blocking 

Fab used for section double-staining, used at 1: 100. 
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Results 

Expression of c-met and m-cadherin mRNAs by fiber-associated satellite 

cells 

In the first part of this study we used isolated myofiber cultures to test individual 

satellite cells for the expression of m-cadherin and c-met genes. We began with these 

genes because each is a candidate "molecular marker" for myosatellite cells at rest or in 

the early stages of activation and because each is of functional interest in muscle 

regeneration. To serve as a satellite cell marker, expression should encompass all satellite 

cells and should exclude other mononucleate cells in muscle tissue such as muscle 

derived fibroblasts. The prime candidate thus far for a resting satellite cell marker has 

been the homophilic adhesion molecule m-cadherin, which has been detected by in situ 

hybridization (Moore and Walsh, 1993) and immunostaining (Cifuentes-Diaz et al., 

1995; Irintchev et al., 1994) in tissue sections taken from regenerating mouse skeletal 

muscle. However, RNA expression was not detected in unstimulated satellite cells or in 

satellite cells stimulated by denervation rather than trauma injury, and the data regarding 

protein expression in quiescent satellite cells is conflicting. A prior study had shown that 

transcripts for the c-met receptor tyrosine kinase can be detected by RT-PCR in RNA 

from pooled cultured rat satellite cells (Allen et al., 1995), indicating that it is expressed 

in some satellite cells. Measurements of that type could not, however, reveal what 

fraction of cells are responsible for the positive signal observed. 

To evaluate these candidate markers an independent criterion for satellite cell 

identity was required. Tn the experiments that follow, a cell was defined as a satellite cell 

and picked for assay based on its anatomic association with an isolated myofiber. First 

utilized by Bekoff and Betz (Bekoff and Betz, 1977), the isolated fiber technique was 

further refined by Bischoff who focused on the rat flexor digitorum brevis muscle and 

used it to show that satellite cells identified initially by association with the parental 

myofiber proliferate in culture and are subsequently myogenic (Bischoff, 1986a). The 
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modification used here was designed for source material from diverse muscles, which 

enabled us to compare satellite cells from muscles that are mainly fast or slow in fiber 

type or from muscles of the two major developmental lineages, the axial and appendicular 

groups (Materials and Methods). 

An initial question was whether either c-met or m-cadherin is expressed in all or 

only some satellite cells at the earliest times after fibers are explanted from healthy muscle 

tissue. The mRNA assay used was multiplex single cell RT-PCR modified from (Kato et 

at., 1997); see Figure 1 and Materials and Methods). In this experiment, three genes 

were monitored for each cell: GAPDH, m-cadherin and c-met. GAPDH is commonly 

employed as a standard because of its ubiquitous expression, and was used here to show 

that a cell had been harvested successfully and that the reverse transcription and PCR 

reactions had proceeded properly. Satellite cells associated with freshly harvested 

myofibers were visualized for collection by treating the preparation with the myotoxic 

anesthetic Marcaine (Winthrop) and staining with the live-cell specific fluorescent dye 

calcein AM; at later timepoints morphological criteria with respect to the associated 

myofiber were used to define satellite cells for harvest. Satellite cells that migrated away 

from their fiber of origin in the culture were not picked, because their identity as satellites 

by anatomical criteria was uncertain. 

The result of this analysis for c-met was striking: 100% of GAPDH positive cell 

samples also scored positive for processed c-met mRNA at all timepoints (Fig 3 A). In 

contrast, only a small fraction «20%) of satellite cells scored positive for m-cadherin at 

the early time point. As expected, we never observed a satellite cell that scored negative 

for GAPDH, but positive for any other gene assayed. We next asked how the expression 

of c-met and m-cadherin mRNAs changed over a 96 hour timecourse in which fiber

associated satellite cells are activated to divide, express MRF family regulators, and 

differentiate (see below). The fraction of cells expressing m-cadherin increased gradually 

throughout the timecourse and was 100% at 96 hours. It is important to note that when 
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we examined satellite cell pools rather than groups of individual cells, all timepoints 

scored positive for both markers, even though the majority of individual cells did not 

express m-cadherin at early timepoints. A final important result was that GAPDH

positive lOT1I2 fibroblasts (data not shown) and muscle fibroblasts derived from muscle 

fiber cultures were entirely negative for m-cadherin and c-met (Fig 3C). 

The experiments above and prior studies of rodent satellite cells have all used 

appendicular muscles, which develop from the c-met dependent migratory cells of the 

lateral somite (Ordahl and LeDouarin, 1992), as the source of satellite cells. During 

development the axial muscles represent a distinct population of myoblasts, and are not 

dependent on the c-met/HGF function (Bladt et af., 1995; Daston et af., 1996). This 

raised the question of whether c-met expression is general for all satellite cells or is 

restricted to the limb lineage. We therefore repeated the experiment using myofibers 

prepared from axial muscles of the deep back, and found consistent positive mRNA 

expression in satellite cells from axial muscle fibers. We also determined that satellite 

cells derived from predominantly fast or predominantly slow fiber types express c-met 

and m-cadherin similarly (see below). From these data we conclude that m-cadherin 

expression marks a small subset of satellite cells at early times following explant or 

activation but that c-met expression appears to include all satellite cells in fiber cultures. 

Satellite cells express c-met protein in fiber culture 

The finding that c-met mRNA is expressed by all satellite cells raised the question 

of c-met protein expression, which would be required for a biological function during 

muscle regeneration. We therefore asked whether c-met protein is expressed by fiber

associated satellite cells and how that expression is related to expression of MRF family 

proteins and to the proliferation status of the cell. Myofiber isolation activates fiber

associated satellite cells to express MRF family regulators, divide and differentiate over a 

period of several days in culture. Prior studies have shown fiber-associated satellite cells 

begin to enter S-phase after approximately 36 hours in culture (Bischoff, 1986a; 
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Yablonka-Reuveni and Rivera, 1994). When cultured in the continuous presence of 

BrdU, fixed at 12-hour intervals, and costained with antibodies directed against mouse c

met (Santa Cruz; see Materials and Methods for characterization) and incorporated BrdU 

(Boehringer), satellite cells in these fiber cultures behaved similarly, entering S-phase of 

the cell cycle approximately 36 hours after isolation. When costained with the antibody 

to mouse c-met satellite cells were positive for c-met immunoreactivity both before BrdU 

incorporation was detected and after, indicating that c-met expression continues even after 

the regeneration program has been activated and cell proliferation has begun (Fig 4A). 

Prior studies have shown that MRF proteins are not expressed in quiescent 

satellite cells, but accumulate in activated satellite cells (Grounds et ai., 1992; Smith et 

ai., 1994; Yablonka-Reuveni and Rivera, 1994; summarized in Table 1). When satellite 

cells from fiber cultures were costained with immune reagents for c-met and either 

myogenin (Wright et aI, described in Cusella-DeAngelis et ai., 1992) or MyoD 

(Novocastra Labs), c-met expression was observed on all cells that expressed MyoD at or 

before 12 hours in culture (Fig 4B) and myogenin by approximately 72 hours in culture 

(Fig 4C); no MyoD- or myogenin-positive mononucleate cells were ever seen that were 

not also positive for c-met protein. This result is important because it suggests that all 

cells in the culture that are activated satellite cells by the criterion of MRF expression also 

express c-met. Myogenin protein expression was first detected after the time at which 

most satellite cells had begun to divide, but it was detected in both BrdU-positive and 

BrdU-negative cells in experiments where BrdU had been provided continuously (data 

not shown). Thus a subset of satellite cells begin to express myogenin before they divide 

or, perhaps, without ever dividing. Myogenin expression was also observed in the 

nuclei of cells in the act of cytokinesis, so its expression is clearly not restricted to 

satellite cells that have already exited the cycle. c-met immunoreactivity was maintained 

when satellite cells fused with each other to form nascent myotubes on the surface of the 

cultured myotubes or on the dish (data not shown). 
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Satellite cells express comet protein in intact muscle 

To determine whether the c-met expression observed in culture is a very rapid 

consequence of activation or is also a property of presumably quiescent satellite cells in 

intact muscle, sections of undisturbed leg muscle were examined for c-met 

immunoreactivity. c-met positive cell outlines were detected at the edges of muscle fibers 

in transverse sections, and were shown to reside beneath the basal laminae by costaining 

with anti-laminin (Fig SA). Co staining with DAPI showed that these outlines contain 

single nuclei, an observation which rules out the possibility that the c-met 

immunostaining belonged to small blood vessels rather than cells (Fig SB). Unactivated 

satellite cells do not express MyoD or myogenin (Grounds et ai., 1992); when costained 

with antibodies to these proteins no c-met positive cells in muscle sections were seen to 

express either MRF. Thus by anatomical criteria and by MRF status, c-met antigen was 

detected on quiescent satellite cells in intact muscle, as well as on satellite cells associated 

with myofibers immediately after isolation and during the course of fiber culture. 

Because c-met RNA and protein were not detectable in muscle derived fibroblasts 

or other mononucleate cells in our preparations, we think that c-met will prove to be a 

useful molecular marker for satellite cells within the context of myofiber cultures derived 

from healthy adult muscles. However, the uses of any molecular marker must be 

carefully matched with the context in which the putative marker was characterized. 

Additional studies in other muscle contexts will be needed to extend the range of 

application beyond those tested here. For example, while no cells other than satellite cells 

stained strongly for c-met protein in transverse sections through the midsection of healthy 

muscles, it remains possible that there will be other muscle associated cell types that 

express c-met. In particular, Schwann cells are neuroglial cells present at neuromuscular 

synapses, and it has been reported that rat Schwann cells are responsive to HGF 

(Krasnoselsky et ai., 1994) so it is likely that they express the c-met. receptor. We also 

do not know how the population of c-met positive cells changes in damaged muscle 
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where other cell types may become prominent, 10 addition to satellite cells (see 

Discussion). 

Six-gene multiplex single cell RT -peR: rationale and feasibility 

As summarized in Table 1, it has been reported that all four MRF family 

regulators are expressed at the RNA level in mass cultures of activated satellite cells 

(Smith et al., 1994). At the individual cell level, immunostaining studies with reagents 

directed against MyoD and myogenin showed positive cells on isolated myofibers and in 

vivo (Grounds et al., 1992; Yablonka-Reuveni and Rivera, 1994). Because of the 

number of genes in the family and the absence so far of powerful immune reagents for 

MRF4 and myf5 proteins, the patterns of four-fold co-expression are not known for 

either embryo or adult muscle systems. However, our ideas about the mechanisms of 

MRF action as deduced from genetic and biochemical assays are strongly attached to and 

bounded by our knowledge of which members of the family are co-expressed at the 

cellular level. We therefore expanded the multiplex single cell RT-PCR to characterize 

co-expression of all four MRFs together with m-cadherin and c-met. 

The determination of six genes for each cell is a higher level of multiplexing than 

has been used previously with this protocol and so raises the important question of how 

robust these measurements are. Using this method, we have found that the question of 

fidelity and sensitivity must be investigated for each combination of genes to be used 

together, presumably because of sequence specific interactions among primers. To 

evaluate fidelity for this gene set, we collected individual satellite cells from the 96 hour 

time point and pooled the cells together. The purpose of pooling was to create a single 

homogeneous master sample from which identical aliquots could be drawn and tested 

with the expectation that each sample should deliver the same answer. We then used this 

pool to make a series of identical measurements on samples containing 0.5 to 0.125 cell 

equivalents of starting material. We chose the 96 hour time point because we knew from 

our own data and from studies of satellite cell mass cultures that all four MRFs are 



39 

expressed in at least some cells at this time. The assay scored positive in all samples for 

each of the six genes from 0.5 to 0.25 cell equivalents per reaction (Fig. 6). However, at 

0.125 cell equivalents per reaction, individual gene determinations from different samples 

began dropping out, indicating that at this level there would be false negative results, 

especially for mRNAs which are not expressed by all cells that made up the pool. We 

also note that if the same set of genes was used with all six primers grouped together 

(rather than split into group A and group B, as shown), then reactions began to fail even 

at the one cell equivalent input level. Further control experiments suggest that this failure 

is tied to the overall concentration of primers per reaction in the first round peR as well 

as overall sequence complexity of the primer mix. We also noted that for some primer 

sets that cross short introns, peR bands corresponding to genomic DNA or to 

unprocessed hnRNA were sometimes detected. This indicates that the assay is sensitive 

to templates present in the range of one to a few copies per cell. False positives from 

nuclear DNA were easily distinguished from true positives by primer design as noted 

above, while other possible false positives from molecular or cellular contamination were 

controlled by taking control samples of fiber culture media at the beginning and end of 

each experiment (see Materials and Methods). Any experiment in which a media sample 

scored as positive was eliminated in its entirety. A peR product band was harvested and 

sequenced for each gene and was shown to be the expected sequence, so we are 

confident that the bands shown represent specific amplification from the intended target. 

We conclude that for this six gene set, the assay has high fidelity and sensitivity down to 

at least 0.25 cell equivalents of input material, and all measurements reported here were 

performed at 0.5 cell per reaction (half of each cell devoted to primer group A and half to 

primer group B). 

Combinatorial expression of MRF regulators during satellite cell 

activation 
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Single cell data for co-expression of c-met, m-cadherin, myf-S, MyoD, 

myogenin, and MRF4 are summarized in Fig. 7. All cells shown were positive for c

met, and no cells were ever found that were positive for any of the other five genes, but 

negative for c-met. At time-zero following fiber isolation, no cells expressed detectable 

myogen in or MRF4, and only a few were positive for m-cadherin, myf-5 or MyoD. We 

do not know whether the infrequent MyoD or myfS positive cells at time zero represent a 

small subset of cells that were activated in vivo before myofiber explant or whether these 

are the very first MRF positive cells produced in response to activation at the time of 

explant and fiber preparation. By the 24 hour time point, many cells were singly 

positive for either MyoD or myf5 (32%), and many others (35%) were positive for both. 

The double positive MyoD/myfS cells might have begun as co-expressors or they may 

represent a second expression state that follows expression of just one of the pair, as is 

presently thought to occur in the embryonic lineages (reviewed in Cossu et ai., 1996a). 

At zero and 24 hour timepoints there appeared to be no correlation between MRF 

expression status and m-cadherin, although the fraction of m-cadherin positive cells 

increased with time. At 48 hours we first observed cells that are myogenin positive, and 

note that these were always also positive for both MyoD and myfS as well as m-cadherin. 

At this time MRF4 expression was detected for the first time and it was always expressed 

in cells that were also positive for myogenin; with only a few rare exceptions, MRF4 

expression was restricted to cells scoring positive for all four MRFs. Because MRF4 

RNA is expressed at relatively high levels is differentiated muscle, the observation that it 

is absent from all satellite cells at early timepoints argues further that the MRF mRNA 

present in our samples was due to harvested satellite cells and not to contamination from 

the adjacent fibers. The later timepoints saw further increase in the proportion of cells 

that were m-cadherin positive (100% by 96 hours). The only apparent correlation 

between MRF expression and m-cadherin expression was noted at 48 hours where all 

cells expressing myogenin were positive for m-cadherin and only half in the non-
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myogenin compartments were m-cadherin positive. The timing of individual MRF gene 

expression summed over the population at each time point here agrees well with that 

reported previously (Table 1.) Minor differences were detection of myf-5 and myogenin 

slightly earlier than by RT -peR of rat mass cultures (Smith et al., 1994) and persistence 

of myogenin expression longer than observed by antibody staining in rat fiber cultures 

(Yablonka-Reuveni and Rivera, 1994). Both could easily be explained by expected 

differences in assay sensitivities. 
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Discussion 

Molecular markers of satellite cell identity 

Molecular measurements currently used to identify mouse satellite cells, including 

DNA synthesis when the adjacent muscle is damaged or removed into culture (Bischoff, 

1986b), onset of MRF expression after activation (Grounds et al., 1992) or myogenic 

differentiation in culture (Rando and Blau, 1994) cannot be used to identify satellite cells 

prior to activation and they also generally preclude further study of the cells. The 

observations reported here suggest that expression of the c-met receptor tyrosine kinase 

can serve as an effective molecular marker for quiescent or activated satellite cells in fiber 

culture, in preparations of mononucleate muscle derived cells, and probably in sections of 

intact healthy muscle when coupled with associated anatomical criteria. Molecular 

markers in systems such as developing neural crest and the immune system have been 

critical for much progress, and the proposed use of c-met as a satellite cell molecular 

marker presents the prospect of a similarly important contribution to the study of adult 

muscle precursor cells and muscle regeneration. However, care must be taken in the 

application of c-met for marker purposes because molecular markers are necessarily 

context dependent. For any new or varied context such as damaged muscle from whole 

animals, the marker will have to be validated by appropriate independent assays akin to 

the positional definition of satellite identity used in this study. In particular, we do not 

presently know if any c-met positive cells other than activated satellite cells will be 

present during a regeneration response in vivo when other diverse cell types such as 

immune cells invade the healing tissue. Some of these cells might express c-met although 

there is no evidence for this at present. We also note that because c-met is a cell surface 

protein, it offers the future possibility of nondestructive identification and cell sorting, but 

the immune reagent used in this study is directed against an epitope located on the 

cytosolic portion of the receptor. 

Functional implications of c-met expression patterns 
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The observation that the c-met receptor protein is expressed in vivo by quiescent 

satellite cells and in culture by dividing and differentiating satellite cells has interesting 

functional implications. The first of these concerns the initial activation of satellite cells. 

A number of defined growth factors, including PDGF, IGF-2, EGF, and FGF have been 

assayed for their effect on satellite cell activation and proliferation in culture systems. 

While these factors can enhance satellite cell proliferation once it has been initiated, 

Bischoff observed that only FGF appears capable of affecting initial activation but it is 

uncertain whether FGF factors are prominently available at the earliest times following 

damage in vivo (Bischoff, 1986b; Bischoff, 1990), and in other systems exogenous 

FGF was not found to elicit a response from quiescent satellite cells (Johnson and Allen, 

1993) or affect regeneration in vivo (Mitchell et ai., 1996). Saline extracts of crushed 

muscle (CME) were found to be able to initiate a response, but the CME active factor has 

not yet been purified to homogeneity (Bischoff, 1986b). HGF/SF is a candidate for the 

activating factor in CME because it shares several biochemical and biological properties 

with the mitogenic activity in CME (Chen et ai., 1994) including the ability to stimulate 

cultured rat satellite cells to divide precociously (Allen et ai., 1995). If HGF/SF is an 

activating factor in vivo, a key requirement is that its receptor be expressed on quiescent 

satellite cells in undisturbed muscle. Our observations show that this requirement is 

fulfilled for c-met. The proposed initiator role for the HGF/c-met signaling system in 

muscle regeneration is notably similar to HGF/c-met functions in several other tissues 

where it is also believed to stimulate proliferative/regenerative programs following injury 

(reviewed in Matsumoto and Nakamura, 1996). Finally, the continued expression of the 

c-met receptor after activation suggests that it may also mediate one or more functions 

later in the regeneration response such as cell migration or morphogenesis as well as 

proliferation. 

m-cadherin expression in satellite cells 
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We directly compared the expression of c-met with m-cadherin and found that m

cadherin positive cells comprised only a small fraction of muscle satellite cells at the zero

time point following fiber isolation, a time at which all satellite cells express c-met. From 

this result we conclude that it is very likely that m-cadherin mRNA is expressed by a 

subset of quiescent satellite cells in intact muscle, although we could not make the direct 

confirming measurements in intact muscle using this technique nor was double 

immunostaining possible using the current reagents. Our data support prior observations 

that m-cadherin is expressed on quiescent satellite cells (Irintchev et at., 1994) but also 

emphasize that less than 20% of quiescent satellite cells are detectably m-cadherin positive 

at the earliest time, when all cells are c-met positive. The fact that m-cadherin positive 

cells comprise a minor subset of an already rare cell population may account for other 

reports in which m-cadherin expression could not be detected in intact muscle (Moore and 

Walsh, 1993; Cifuentes-Diaz et al., 1995). At later times following activation in culture, 

an increasingly large fraction of satellite cells expressed m-cadherin, and this is consistent 

with studies reporting robust m-cadherin expression during some in vivo regeneration 

paradigms (Moore and Walsh, 1993; Irintchev et aI, 1994; Cifuentes-Diaz et at, 1995). 

The significance of the c-met/m-cadherin double positive cells at the zero 

timepoint compared to their more prevalent c-met positive/m-cadherin negative 

counterparts is uncertain. It is tempting to speculate that the early m-cadherin positive 

cells represent a functionally distinct subclass, perhaps satellite cells programmed to 

differentiate quickly upon stimulation. This notion holds some attraction because m

cadherin mediates adhesion with other m-cadherin expressing cells which could be useful 

for assembling clusters of early differentiating cells into the earliest myofiber framework. 

MRF expression type progression 

When single cell expression typing for the four MRF regulators was pooled at 

each timepoint to recreate the entire cell population, the picture was very similar to prior 
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studies of satellite cell mass cultures (Table 1). Our MRF expression results also agreed 

well with single MRF factor determinations made previously for satellite cells from fiber 

cultures that were similar to, though not identical with, ours. As in all culture 

preparations, it is important to recognize that the stimulus and course of satellite cell 

activation may be different from that in the intact animal, though the general course of 

MRF expression following injury is similar (Grounds et aI., 1992.) The multiplex single 

cell measurements also gave new insights not possible in prior studies of either satellite 

cells or embryo myoblasts and myocytes. For example, it has never been certain whether 

all four MRFs are ever co-expressed in individual cells or whether their joint presence 

within a tissue instead reflected multiple two or three member combinations. Data from 

our 48 and 96 hour timepoints clearly showed that simultaneous expression of all four 

MRFs is a preferred expression state concurrent with differentiation in this system. Cells 

positive for myf-S/MyoD/myogenin were also prominent at these times, and it is not clear 

whether all cells in our system will at some time express the full MRF set. 

From the data in Figure 7, we propose a model for the use of MRF regulators in 

the progression of fiber-associated satellite cells from their initial MRF negative quiescent 

state through activation and into differentiation (Figure 8). The model is based on the 

frequency of individual expression states as a function of time following activation. The 

resulting progression is quite simple because, with respect to the MRFs, only six of the 

possible sixteen expression states were observed at significant frequencies at any 

timepoint (two other expression states, myogenin only and myogenin/MRF4, were 

represented by just five and two of 201 cells, respectively, and their significance 

therefore remains uncertain). In this model, cells enter the MRF positive compartment by 

expressing either MyoD or myfS alone. These cells are prominent by 24 hours, but 

became rare by 48 hours. It appears that these cells become positive for both MyoD and 

myfS rather quickly, and it is possible that some cells enter the MRF positive state by 

simultaneously expressing both determination class MRFs from the outset, as indicated. 
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The entry of cells into the MRF positive pool by either MyoD-first or myf5-first 

pathways is reminiscent of determination class MRF expression in the developing 

embryo. In the embryo, different inductive signals are thought to initiate the expression 

of either myf5 (in the early dorsomediallineage) or MyoD (in a later ventrolateral lineage ) 

in two distinct sublineages of the myotome (Cossu et al., 1996a)(Cossu et al., 1996a, 

reviewed in Cossu et al., 1996b; Yun and Wold, 1996). It will be interesting in future 

studies to explore the signaling pathways active in satellite cells to see if there is more 

than one and to examine possible relationships to MyoD- or myf5-mediated initiation. In 

the fiber-associated satellite cells, the myf5/MyoD double positive state appears to be 

required for later myogenin expression which is absent at 24 hours but prominent by 48 

hours. This differs from the earliest myotomallineage in the embryo, where cells of the 

myf5 initiated dorsomedial domain apparently remain MyoD negative while they begin to 

express myogenin and to differentiate (Smith et al., 1994; Yoon, Yu and Wold, 

unpublished). This myf5/myogenin positive, MyoD negative expression state common 

in the embryo was never observed in activated satellite cells. MRF4 expression also 

becomes prominent at 48 hours in satellite cells, and it was detected exclusively in cells 

that also express myogenin. The vast majority of MRF4 positive cells (95 %) expressed 

all four MRFs. We do not know the experimental or biological significance of two rare 

expression types, myogenin alone and myogenin/MRF4, but a simple possibility 

indicated in the model is that they arise by the downregulation of determination class 

MRFs. We cannot, however, rule out the less interesting possibility that they are simply 

low frequency false negatives for both MyoD and myf5. Finally, it is noteworthy that 

even at late timepoints, there are a few cells that are c-met positive and negative for all 

four MRFs. It is uncertain if such cells expressed MRFs at any earlier time, but whatever 

their expression history, they may represent cells that possess muscle progenitor status at 

the time of the assay. 
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By coupling the use of c-met as a marker of satellite identity with the use of 

multiplex RT-PCR, as initially demonstrated here for the four MRFs and m-cadherin, it 

should be possible to characterize coordinate expression states for other genes involved in 

controlling and executing activation, proliferation, differentiation and, perhaps, the 

quality of stem-cell like renewal. 
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Figure 1: Schematic depiction of single-cell RT -peR as used for this work. The top 

panels show phase images of a satellite cell (typical in appearance for cells from 24 to 96 

hours) before and during harvest. 
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Figure 2: Western blot of proteins from satellite cells expanded for 2 weeks in mass 

culture, with all myofibers removed. A single band of a molecular weight appropriate for 

the ~-chain of c-met is detected, and was competed away by preincubating the antibody 

with excess peptide antigen. 
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Figure 3: A) Sample single-cell RT-PCR gel from 48 hour in culture samples showing 

GAPDH (expected product 290 bp), c-met (expected product 249 bp), and m-cadherin 

(expected product 316 bp); marker=lOO bp ladder (Gibco). B) Line graph illustrating the 

population shift from c-met+ m-cadherin- (dashed line) to c-met+ m-cadherin+ (solid 

line) over the first 96 hours in culture of satellite cells on isolated myofibers. 
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Figure 3 C) Single-cell RT -PCR of muscle-derived fibroblasts harvested from the surface 

of a tissue culture dish. All GAPDH positive cells were negative for both c-met and m

cadherin. 
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Figure 4: A) Myofiber stained and photographed after 48 hours in culture shown in phase 

and with nuclei visualized with DAPI; composite confocal image showing BrdU 

incorporation in nuclei of c-met positive cells. (400x) B) Myofiber stained and 

photographed after 96 hours in culture shown in phase and with nuclei visualized with 

DAPI; composite confocal image showing expression of MyoD in nuclei of c-met 

positive cells. (400x) C) Myofiber stained and photographed after 96 hours in culture 

shown in phase and with nuclei visualized with DAPI; composite confocal Image 

showing expression of myogen in in the nucleus of a c-met positive cell. (400x) 
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Figure 5: A) Confocal images of c-met and c-met + laminin in an unmanipulated muscle 

section showing localization of c-met expression (green) under the basal lamina (red) of a 

myofiber. (l600x) B) Composite photograph of a muscle section similar to B) showing a 

c-met positive (red) satellite cell and its nucleus (blue).(400x) 
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Figure 6:Analysis of fidelity of multiplex single-cell RT -PCR reactions when challenged 

with decreasing input cDNA per reaction. A set of individual satellite cells after 96 hours 

in culture were harvested, pooled and reverse-transcribed; the resulting homogeneous 

cDNA was used in varying cell equivalents in first PCR reactions containing primers for 

either c-met + m-cadherin (Mix A), MyoD + myogenin + myf-5 + MRF4 (Mix B), or all 

6 primer sets (Mix C, data not shown). Second reactions were run as usual and the 

products analyzed. Consistent positive results were obtained using from 0.25 to 0.125 of 

a cell equivalent of cDNA as input. It should also be noted that, even every cell put in the 

pool had been harvested successfully (the usual yield is about 80%), only about half 

would be expected to express myogenin or MRF4, thereby increasing the effective 

dilution of the mRNAs for those genes. 
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Figure 7: Representational summary of the combined gene expression status for c-met, 

m-cadherin, MyoD, myogenin, myf-S, and MRF4 among single satellite cells at different 

timepoints. Open circles indicate m-cadherin negative cells, filled circles indicate m

cadherin positive cells. The location of a cell within a colored rectangle indicates that the 

cell expressed that mRNA; cells in compartments formed by the overlap of two or more 

rectangles coexpressed those mRNAs. 
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Figure 8: Model of MRF coexpression status in satellite cells during the course of a 

regeneration response in fiber culture. 
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Table 1: Summary of prior studies of MRF expression in activated satellite cells. For this 

table only those studies in which satellite cells were either isolated as a highly enriched 

population or identified individually by morphological means were included, since MRF 

gene expression in other preparations cannot be unequivocally assigned to satellite cells. 
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Chapter 3 

Survey of gene expression in mouse skeletal 
muscle satellite cells and comparison to two 

myogenic cell lines 
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Abstract 

While muscle satellite cells playa vital role in skeletal muscle repair after disease 

or injury, many basic questions regarding their biology remain unanswered due to 

technical difficulties. In many studies, immortalized cell lines are analyzed for clues to 

satellite cell processes; it is also often assumed that the much better-studied programs of 

embryonic myogenesis must be applicable to the satellite cell myogenic program. 

Exploiting the techniques of satellite cell isolation by culture of single myofiber explants 

and single-cell RT -PCR, I have assayed populations of satellite cells over the first four 

days of a regeneration response in culture (during which the cells will become activated, 

proliferate, and begin to differentiate into mature myofibers) for five groups of genes of 

general interest in myogenesis: positive and negative regulators of myogenesis, positive 

and negative regulators of the cell cycle, growth factors and their receptors, local 

signaling molecules, and markers of myogenesis in the embryo. The expression patterns 

detected revealed that many genes whose action is well-characterized in the embryo and 

widely studied in tissue culture may playa different role, or no role at all, in satellite 

myogenesis. This suggests that satellite cells posess a unique myogenic program, and 

should be considered as distinct from embryonic myoblasts and cultured cell lines. Next, 

the application of multiplex single-cell PCR to the genes and gene families detected in this 

study will serve to further define the biochemistry of satellite cell myogenesis. 
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Introduction 

Skeletal muscle satellite cells are mitotically quiescent, mononucleate myogenic 

precursor cells resident in adult skeletal muscle. They are physiologically and clinically 

important due to their central role in regeneration of muscle tissue which has been 

damaged by injury or disease, yet very little is known about their biology compared to 

other myogenic cell lineages such as those of the developing embryo. This is largely due 

to their rarity, the difficulty of isolation and identification, and the difficulty of obtaining 

pure samples of satellite cell material in sufficient quantity for conventional biochemical 

and molecular analyses. For these reasons, many of the investigations into satellite cell 

biology have been performed on immortalized cell lines derived from presumptive 

satellite cells which maintain some satellite characteristics. 

The technique of patch-clamp harvesting of single satellite cells resident on 

cultured muscle fibers is an efficient and effective method of collecting RNA from 

satellite cells for RT-PCR analysis (Cornelison and Wold, 1997) and provides a method 

of studying gene expression in satellite cells over the timecourse of an activation 

response. This technique avoids the drawbacks of potential contamination from 

nonsatellite cells present in muscle cultures or from the established muscle itself, and 

does not require large amounts of material for reliable analysis. This technique allowed 

assay of groups of satellite cells for genes whose expression pattern at various points in 

their myogenic program might clarify aspects of satellite cell biology, as well as 

establishing similarities or differences to other myogenic programs such as those of the 

embryonic muscle lineages. 

Pools of cytoplasm collected at 0, 24, 48 and 96 hours after fiber harvest were 

reverse-transcribed then analyzed for the expression of a number of genes of potential 

importance in the satellite cell myogenic program. These included positive and negative 

regulators of myogenesis, positive and negative regulators of the cell cycle, signaling and 

cell fate determination molecules, and other genes mostly associated with somitic 



75 

myogenesis. cDNA samples from two myogenic cell lines commonly used as models for 

the satellite cell system, C2C 12 (Yaffe and Saxel, 1977), made from thigh muscle of a 

60-day old male C3H mouse and growth-transformed using a carcinogen, and MM14 

(Hauschka, 1981), made from thigh muscle of a 60-day old male Balb/C mouse and the 

result of a spontaneous immortalization in culture, were also analyzed under conditions 

promoting either growth or differentiation for comparison with each other and with 

primary satellite cells. 

The picture of satellite cells that emerges is of a dynamic population with the 

capacity to participate in a wide variety of intracellular and extracellular interactions, and 

possessing a pattern of gene expression that is quite different in several aspects from 

either embryonic myogenic precursor cells or model myogenic cell lines. These results 

mandate a rethinking of some current models of satellite cell biology, and will be further 

refined when combinatorial single-cell expression studies of the genes determined to be 

relevant in satellite cells are done. 
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Materials & Methods 

Muscle fibers from adult mice were isolated and cultured and their satellite cells 

harvested with a patch-clamp pipette as described previously (Cornelison and Wold, 

1997), with the exception that cells were pooled after harvest into a scaled-up reverse 

transcription reaction prior to transcription into cDNA; the pool cDNA was then analyzed 

by PCR and agarose gel electrophoresis for expression of genes of interest (Figure 1). 

Primers used are listed in Table 1. All primer sets were tested on known positive cDNAs 

for amplification of appropriate bands. All outside primer sets were designed to span at 

least one intron, where such information was available, and when no genomic structure 

information was available primers were tested on genomic DNA for non-amplification of 

bands equivalent to those amplified from a cDNA template. 

Total RNA from C2C12 cells was obtained from cells in growth medium (DMEM 

supplemented with 20% FBS) or after three days in differentiation medium (DMEM 

supplemented with 2% horse serum) using RNeasy columns as directed by the 

manufacturer (Qiagen). Total RNA from MM14 cells in growth medium (DMEM + 15% 

horse serum + 2 ng/ml bFGF) or differentiation medium (DMEM + 2.5% horse serum + 

1 11M insulin) was collected similarly. mRNA was reverse-transcribed into cDNA using 

the same protocol used for satellite cells, and cDNA from 0.5 ng of total RNA (2 pg, or 

approximately 50 cell equivalents, of cDNA) was used as template for each PCR 

reaction. 

First and second PCRs were run as described previously, using only one outside 

primer set per first reaction, and the corresponding inside primer set for the second 

reaction, to avoid possible interactions between primer sets. Products were analyzed on a 

2% agarose gel. Multiple (n>5) independently collected satellite cDNA pools were 

analyzed for each gene and timepoint; conditions scoring positive two or more times were 

counted as positive for the purposes of data analysis. Based on previous dilution studies 

(Cornelison and Wold, 1997), I estimate that cell pools in which 20% or more of the cells 
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harvested are expressing a given gene will score positive for expression of that gene; 

some genes may be detected at lower frequencies as well. 
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Results & Discussion 

Positive regulators of myogenesis: MRFs and MEFs 

The myogenic regulatory factors, or MRFs, are basic-helix-Ioop-helix 

transcription factors which together specify myogenic determination and differentiation 

(reviewed in Yun and Wold, 1996). While they have been extensively studied during 

execution of embryonic myogenesis, their expression patterns and function during 

satellite cell myogenesis have been less well studied and understood (reviewed in 

Cornelison and Wold, 1997). The work presented in Chapter 2 suggests a possible 

model for MRF progression during the transition from quiescence through proliferation 

and differentiation, and the work in Chapter 4 will supply further clues as to the possible 

function during satellite myogenesis of one member of the family, MyoD. 

The MEF2 (Myocyte Enhancer Factor 2) family of DNA-binding proteins are also 

thought to have a positive effect on myogenic progression, although unlike the MRFs 

they are not expressed exclusively in muscle (reviewed in Molkentin and Olson, 1996). 

The four family members present in humans and mice, designated MEF2a-d, and the 

single factor present in Drosophila, DMEF2, all share a conserved MADS-box followed 

by a MEF2 domain, which together regulate dimerization and DNA binding, followed by 

divergent transactivation domains (reviewed in Molkentin et at., 1995). They may bind 

to their cognate DNA sequences as either homo- or heterodimers, and are important for 

the activity of several muscle-specific promoters, such as that of myogenin (Cheng et al., 

1992; Yee and Rigby, 1993; Edmondson et al., 1994) and MRF4 (Naidu et at., 1995) as 

well as downstream muscle genes such as desmin and myosin (Kaushal et al., 1994). It 

also appears that MEF2 dimers can, through protein-protein interactions, physically 

associate with MRF-E protein heterodimers when either complex is bound to DNA and 

synergistically transactivate gene transcription (Molkentin et aI., 1995). Deletion of the 

single Drosophila MEF2 gene results in myoblasts which form in the proper numbers and 

regions but which fail to differentiate into functional, multinucleate myofibers 
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(Ranganayakulu et ai., 1995). Results from tissue culture experiments as well as 

expression pattern analysis suggest that the MEF2 family members act to cooperatively 

and synergistically increase the efficiency of MRF-mediated gene activation, including 

MRF autoregulation (reviewed in Yun and Wold, 1996)(Molkentin and Olson, 1996) . 

MEF2C is considered to be the major MEF2 family member contributing to 

myogenesis; in the adult mouse its expression is limited to skeletal muscle, spleen and 

brain (Martin et al., 1993). During embryogenesis, MEF2C is the first MEF to be 

detected by in situ hybridization. In addition to early cardiac expression, MEF2C 

transcript is present in myotomes at e8.5, approximately 18 hours behind the onset of 

myf-5 expression, and progresses caudally as somites mature. Although it had been 

suggested from tissue culture experiments that MEF2 activity is required to activate 

transcription of myogen in (Cheng et ai., 1992; Yee and Rigby, 1993), expression of 

MEF2C lags behind myogenin by approximately six hours, and it is now thought to act 

to reinforce rather than to induce MRF expression. In caudal somites, MEF2C 

distribution is fairly uniform, while in more mature rostral somites transcripts are 

enriched between or at the edges of myotomes. In the limb buds, MEF2C transcripts are 

detectable at e 11.5, concurrently with myogenin and MyoD, although with a different 

spatial distribution with regard to region of condensing muscle and, later, muscle fibers. 

(Edmondson et al., 1994). MEF2C-null mice die during embryogenesis of a cardiac 

malformation (Lin et al., 1997). 

Expression of MEF2B mRNA in myotomes is slightly delayed relative to 

MEF2C, and is first detected at e9.0. Its expression pattern closely resembles that of 

MEF2C, and in later myogenesis MEF2B is preferentially localized at the ends of nascent 

myofibers. MEF2B-null mice are phenotypically normal, suggesting redundant functions 

shared with other family members (Molkentin et ai., 1996). 

MEF2A transcripts are detectable in the myotome beginning at e9.5, at which time 

they are also present at lower levels throughout the lateral mesoderm and in migrating 



80 

neural crest cells. While it initially lags behind MEF2C expression, by el0.5 MEF2A 

expression extends to somites more caudal than those expressing MEF2C. Its expression 

pattern within the somite is very similar to that of myogenin (Edmondson et al., 1994). 

MEF2D is widely expressed in many embryonic and adult tissues, but has a 

splice variant which is preferentially expressed in skeletal and cardiac muscle (Martin et 

al., 1994). Embryonic expression of MEF2D (using a probe which did not distinguish 

between the muscle-specific isoform and the more broadly expressed one) is similar to 

that of MEF2A, appearing at the same time and in a pattern resembling myogenin 

expression in the myotome; however MEF2D is more broadly expressed in several cell 

types, with the strongest expression in cardiac tissue and myotomes (Edmondson et al., 

1994). 

The data for this section are summarized in Table 2. When assayed by RT -PCR, 

C2C12 cells express MEF2A, MEF2C, MEF2D (general) and MEF2D (muscle-specific) 

under both growth and differentiation conditions. A previous study found that by 

Western blot, C2C12 cells in growth medium express MEF2B and MEF2D, while cells 

in differentiation medium express all four (Molkentin et al., 1996). MEF2A has also 

been immunolocalized to MyoD+, myogenin+ differentiating C2C12 cells (Yablonka

Reuveni and Rivera, 1997). 

MM14 cells do not detectably express any of the MEF2 family members when in 

growth medium, and upregulate expression of MEF2A and both isoforms of MEF2D in 

differentiation medium. The lack of MEF2C expression is a notable difference from both 

the embryonic expression pattern and the C2C 12 cell line. 

Fiber-associated primary satellite cells express the general isoform of MEF2D at 

all times assayed, while MEF2A, MEF2C, and MEF2D muscle-specific transcripts are 

absent from freshly isolated cells but upregulated in activated satellite cells. MEF2A is 

more strongly/widely expressed, based on the high frequency with which it is detected 

among pools, while MEF2C expression is much weaker/rarer. While a minimum 
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number of pools scored positive for MEF2C at 24 and 96 hours, there is probably not a 

significant difference in expression and/or distribution between 24 and 96 hours, in spite 

of the lack of a positive cumulative score at 48 hours. This is supported by reports in 

which MEF2A protein was detected in differentiating C2C12 cells which had already 

upregulated MyoD and myogenin, but before the expression of muscle structural proteins 

(Yablonka-Reuveni and Rivera, 1997). 

Negative regulators of myogenesis: Id family and m-twist 

Id family HLH proteins 

The four known members of the Id family, Id1-4 (Benezra et al., 1990; Sun et 

al., 1991; Christy etal., 1991; Riechmann etal., 1994), contain helix-loop-helix motifs 

which mediate heterodimerization with the MRFs or their pairing partners E12 and E47, 

but do not contain a DNA-binding basic region, rendering Id-containing dimers 

transcriptionally inactive (Benezra et al., 1990; Sun et al., 1991). Sequestration of 

differentiation-promoting transcription factors in inactive complexes by Ids is thought to 

be a mechanism for maintaining cells in a growing, undifferentiated state in spite of the 

presence of differentiation factors; a similar function has been suggested for the single 

Drosophila homologue, extrarnaeroehaetae (erne) (Ellis et al., 1990; Garrell and 

Modolell, 1990). High levels of Id are expressed in proliferating myoblasts (Benezra et 

aI., 1990), as well as in areas of active cell proliferation in the embryo, and forced 

expression of Id family members can delay or repress the emergence of a differentiated 

phenotype in cultured cells, even under low-serum conditions (Jen et ai., 1992). In vivo, 

overexpression of Id 1 can compensate for a deleterious phenotype caused by 

overexpression of myogenin in mice mutant for both alleles (Gundersen et al., 1995). 

The expression patterns of Id-l, Id-2 and Id-3 during murine embryogenesis are 

mostly overlapping, but that of Id4 is unique. Id1 expression begins before gastrulation 

and is detected at very high levels in almost all cells of the embryo; as development 
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progresses expression is lost in a time- and tissue-dependent manner, declining first in 

precardiac mesoderm and CNS while it is still being expressed in some (but not all) areas 

of rapid proliferation and morphogenesis such as limb, visceral arches, and migrating 

neural crest. In somites, Idl is expressed in the rostral half of the sclerotome (possibly 

due to the presence of migrating neural crest cells) and the dermotome. Unlike various 

cell lines studied, myotomal cells expressing myf5 or myogen in apparently do not 

express Idl (Wang et aI., 1992; Evans and O'Brien, 1993). Id2 and Id3 expression are 

nearly identical to Idl (Ellmeier and Weith, 1995; Jen et aI., 1996). Id4 expression is 

reportedly limited to neuronal tissues and some epithelial tissues (Jen et af., 1996). 

Although the actions of the Id family proteins have also been well-characterized in 

hematopoietic cells, where they have a similar function in repression of differentiation, 

studies of binding affinities of Id family members with E proteins (known as class A, or 

ubiquitous bHLH factors), MRFs, and hematopoietic bHLH factors (both of which 

belong to class B, cell type-specific bHLH factors) suggests that at least some part of 

their role in myogenesis may be distinct from their role in hematopoiesis. In a 

quantitative yeast two-hybrid assay, Idl, Id2, and Id3 were all found to bind with high 

affinity to E proteins, but a broader range of interaction strengths was seen for class B 

factors. Id2:myf5 and Id2:MyoD are high-affinity interactions, Idl:myf5 and Idl:MyoD 

are approximately fourfold weaker, while all other interactions are very low-affinity 

(Langlands e t aI., 1997). 

The data for this section are summarized in Table 2. C2C 12 cells assayed by RT

PCR express transcripts for all four Id family members under both growth and 

differentiation conditions, while MM14 cells express no Ids in growth medium and 

upregulate Ids 1, 2 and 4 when cultured in differentiation medium. 

The analysis of satellite cell expression of Id family genes in this paper represents 

the first recorded case in which myogenic cells which are not immortalized cell lines have 

been shown to express Ids. Based on the percentages of satellite cells also expressing 
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MRFs, this study suggests that Ids must also be coexpressed with MRF family members, 

at least in later stages of the response. Satellite cells do not express any of the Ids when 

freshly harvested and presumably still quiescent or newly activated, implying that Id 

regulation does not playa role in maintenance of quiescence. If the mechanism of Id 

inhibition is considered to be sequestration of myogenic bHLH factors, the lack of Id 

expression is not surprising since no MRFs are expressed at this time point. By 24 hours 

after activation, satellite cells express Ids I, 2, and 3; this expression is maintained for the 

duration of the timecourse. Expression of Id4 commences by 48 hours and is also 

maintained at 96 hours post-activation. These data indicate that Id may be playing a role, 

probably in a sub-population of cells represented in the pools, in maintenance of the 

undifferentiated and proliferative state in the presence of MRFs. 

M-twist 

M-twist is the mammalian homologue of the Drosophila bHLH transcription 

factor twist, which is required for mesoderm-specific gene expression and, later, muscle 

formation (reviewed in Baylies and Bate, 1996). M-twist acts as a negative regulator of 

MRF-directed myogenesis by multiple mechanisms: 1) by sequestering MRFs and/or E 

proteins in a mechanism similar to that of the Ids, 2) by interacting with the basic domain 

of MyoD and possibly other MRFs in a way that prevents DNA binding, and 3) by 

actively inhibiting MEF transactivation activity (Hebrok et al., 1997; Spicer et at., 1996; 

Hamamori et aI., 1997). 

During embryogenesis, the expression pattern of m-twist mRNA is similar to Ids 

1-3. Transcripts are first detected in the anterior mesoderm at e7.0, in the somites, head 

mesenchyme, and somatic lateral plate by e8.0, and later in the branchial arches and their 

derivatives and areas of chondrogenesis. The somitic expression of m-twist originates in 

the dermomyotome, and is later restricted to the dermotome and the sclerotome and 

absent from the myotome (Fuchtbauer, 1995). A more recent study of m-twist protein 

distribution found a similar pattern of expression, but reduced spatially and temporally 
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(Gitelman, 1997); this may be due to post-translational modifications, as the author 

suggests, or to limitations of the antibody reagent. Twist-null mice die at e 11.5 of cranial 

defects; they also have aberrancies in the somites and limb buds but no apparent defects 

in myogenic specification or progression (Chen and Behringer, 1995). 

The data for this section are summarized in Table 2. C2C12 cells in this study 

expressed twist under both growth and differentiation conditions. Previous work in our 

lab found that twist mRNA is not detected by Northern blot in C2C12 cells under either 

growth or differentiation conditions (K. Yun, pers. comm.); however the highly sensitive 

and non-quantitative nature of the RT -PCR protocol employed here can lead to detection 

of trace amounts of message with the same apparent strength as robust signals. MM14 

cells did not score positive for twist mRNA in either state; if m-twist is required for 

negative regulation of MRF activity, this may contribute the extreme tendency towards 

differentiation in this cell line. 

Expression of m-twist in satellite cells is undetectable at 0 hours, present at 24 

and 48 hours, and once more undetectable at 96 hours in culture. Given the assumption 

that twist is acting to prevent differentiation in cells expressing MyoD and myf5, this 

expression pattern seemed to fit very nicely- twist is not expressed in the absence of MRF 

expression, is upregulated when MyoD and myf5 are expressed but most cells are still 

proliferating, and is downregulated when differentiation begins. To test this hypothesis, 

single satellite cells were assayed as before for a six-gene expression set, this time 

replacing the primer set for m-cadherin with those detecting m-twist. The predicted result 

would be expression of m-twist in cells in the MyoD+, myf5+, or MyoD+myf5+ state 

but not in cells which had yet to express these genes or which had also begun to express 

myogenin or MRF4. Contrary to this, no obvious correlation was found between 

expression of m-twist and the complement of MRFs being coexpressed in the same cell 

(Figure 1). Clearly, the role of twist in myogenesis is not simple inhibition of MRFs; it 

may be required for other reasons, or not required at all, as the phenotype of twist-null 
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mice suggests. This result illustrates the power of single-cell analysis for understanding 

both the potential for and the effects of intracellular protein-protein interactions in vivo. 

Growth factors and growth factor receptors 

Hepatocyte growth factor/scatter factor and comet 

Hepatocyte growth factor is a widely-expressed cellular growth factor exhibiting 

mitogenic, motogenic, morphogenic, and survival effects on diverse cell types. It was 

cloned independently as a mitogen for primary hepatocytes, a fibroblast-derived factor 

which "scatters" tightly growing epithelial cell colonies, a factor inhibiting the growth of 

certain carcinomas, and an epithelial morphogen which induces branching tubulogenesis 

in endothelial cells. HGF is a mitogen for many cell types and is involved in vivo in 

hematopoiesis, chondrogenesis, and angiogenesis. It is one of the most powerful 

motogens known for diverse cell types including renal, hepatic, and mammary epithelial 

cells (for which it also functions as a morphogen), keratinocytes, thyroid cells, and 

vascular endothelial cells, as well as myogenic precursor cells. It is a potent mediator of 

cell survival in primary cultured neurons and PC 12 cells, and is thought to act as a 

neurotrophic factor (reviewed in Matsumoto and Nakamura, 1996). 

With its pleiotropic mitogenic, motogenic, and morphogenic properties, HGF is 

believed to be important in processes requiring coordinate cell growth, migration, and 

differentiation such as embryogenesis and repair of tissues and organs. This idea is 

borne out by the widespread expression of HGF in diverse embryonic tissues as well as 

in regenerating cell populations in organs such as liver, kidney and lung; most often cell 

types expressing HGF are mesenchymal (reviewed in Anastasi et al., 1997). Null 

mutations of HGF result in embryonic death due to placental and hepatic defects (Schmidt 

et al., 1995). 

All of the activities of HGF are transduced by a single receptor, the c-met 

protooncogene. c-met is a disulfide-linked heterodimer with a small external ex-chain and 
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a membrane-spanning ~-chain with tyrosine kinase activity on its cytoplasmic domain 

(Bottaro et al., 1991). HGF binding to c-met induces receptor autophosphory lation, 

which allows docking of various signal transduction proteins (Ponzetto et al., 1994). c

met is most often seen expressed in epithelial cells adjacent to HGF-expressing 

mesenchymal cells; HGF and c-met are therefore thought to act in paracrine signaling 

during epithelial-mesenchymal interactions. 

The null mutation of c-met (Bladt et al., 1995) first gave a clue as to the role of 

HGF!c-met signaling in myogenesis: the null embryos had a muscle phenotype in which 

myogenic precursor cells otherwise destined to emigrate to the developing limb buds 

remained in the somite, a phenocopy of the Pax-3/Splotch mutant muscle defects. It was 

later determined that Pax-3 can directly activate c-met transcription in presumptive limb 

MPCs (Epstein et al., 1996), nicely explaining the similarity in phenotype. Also, 

exogenously applied HGF could induce Pax-3 expressing myoblasts from the interlimb 

level of chick embryos to migrate into the lateral plate mesoderm (Brand-Saberi et al., 

1996). Regarding the pleiotropic effects of HGF/c-met signaling in different tissues, it is 

of interest to note that, while deletion of c-met produced myriad early defects resulting in 

death, deletion of only the Grb2-binding domain of c-met did not produce placental or 

liver defects, but did cause a striking reduction in limb muscle and a deficit in secondary 

myogenesis (Maina et al., 1996). 

The involvement of the HGF/c-met signaling pathway in satellite cells was first 

suspected in our lab due to the above results from embryonic myogenesis, and in other 

labs due to the emerging resemblance of HGF to the elusive satellite cell activating factor 

present in crushed muscle extract (discussed in Cornelison and Wold, 1997). It has since 

been shown (Cornelison and Wold, 1997; see Chapter 2) that c-met is expressed by all 

satellite cells at all stages of quiescence and activation, and that HGF is present in 

undamaged muscle tissue and capable of activating quiescent satellite cells (Tatsumi et al., 

1998). 
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The data for this section are summarized in Table 3. In this study, c-met and 

HGF are expressed by C2C 12 cells under both growth and differentiation conditions, in 

accordance with results showing robust expression of c-met and HGF in growing 

C2C 12s, and lower levels in differentiating cells, acting in an autocrine stimulatory loop 

(Anastasi et ai., 1997). This is abnormal for c-met/HGF signaling, which usually 

operates in a paracrine fashion, but is not unique (reviewed in Anastasi et ai., 1997). In 

contrast, MM14s express c-met, but do notappear to self-stimulate with HGF. This lack 

may be a component of their highly differentiation-prone phenotype, and their 

dependence on high levels of bFGF stimulation to induce cell cycling and prevent 

terminal differentiation; however, addition of HGF to the medium in amounts sufficient 

to stimulate satellite cells in vitro was not able to significantly repress the differentiation 

phenotype in the absence of bFGF (data not shown). 

Primary satellite cells were also found to express HGF in an autocrine fashion 

approximately 36 hours after activation, inviting the theory that after initial stimulation 

with HGF released from locally-damaged muscle tissue, satellite cells begin to express 

HGF both to maintain their own proliferation in an autocrine fashion and possibly also to 

activate the regeneration program in satellite cells which move into the area later in the 

response. Expression of HGF following activation has also been noted in primary rat 

satellite cells (R. Allen, pers. comm.). 

Fibroblast growth factors and receptors 

The fibroblast growth factors, thirteen of which have now been cloned, are a 

family of peptide growth factors which are widely expressed during embryogenesis and 

in adult cell types, and mediate many processes such as gastrulation, mesoderm 

induction, limb outgrowth and patterning, angiogenesis, cardiac myogenesis, wound 

repair, stimulation of neurite outgrowth and neuronal survival, induction of ear, bone, 

skin, hair, limb, muscle, neural tube, tooth, and trachea, and suppression of myogenesis 

(reviewed in Kudla et ai., 1995; Pizette et ai., 1996). The first two isolated, FGFI 
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(acidic FGF) and FGF2 (basic FGF), are the best-characterized and most-studied. 

Expression studies of the various FGFs shows that, while the family as a whole is quite 

broadly expressed, each member has a discrete expression pattern. As possible 

mediators of growth and differentiation during myogenesis, it has been shown that 

FGF1, FGF2, FGF4 (Niswander and Martin, 1992), FGF5 (Haub and Goldfarb, 1991), 

FGF6 (Pizette et al., 1996), FGF7 (Mason et ai., 1994), and FGF8 (Crossley and 

Martin, 1995) are expressed at some point in the developing myotomes, limb muscles, 

and other sites of myogenesis. Of special interest is FGF6, whose expression in the 

embryo and adult appears to be restricted to skeletal muscle cells and which, when 

deleted from the germline, leads to failure of muscle regeneration (Floss et al., 1997). In 

vitro, expression of most FGFs was diminished when myoblasts differentiated and all of 

these factors have also been shown to delay or suppress differentiation in cultured 

myoblasts when expressed under a constitutive promoter (reviewed in deLapeyriere et 

al., 1993; Pizette et ai., 1996). This suppression is mediated, at least in the case of 

FGF2, by activation of protein kinase C phosphorylation of myogenin (and possibly 

other MRFs) on the basic domain, abolishing DNA binding (Li et ai., 1992). 

FGF signals are transduced by four (to date) receptor tyrosine kinases, FGFR1-

4, which share sequence and structural homology. They are activated by ligand binding 

in cooperation with heparin sulfate proteoglycans, which promotes receptor dimerization 

and autophosphorylation of catalytic residues of the cytoplasmic tyrosine kinase domain 

(reviewed in Wilkie et al., 1995). The FGFRs each have preferred FGFs which they will 

bind with high affinity, as well as differing expression patterns during embryonic and 

adult life. During embryogenesis, the only FGFR expressed in myotomes is FGFR4 

(Stark et al., 1991); later it is coexpressed in limb premuscle masses and differentiating 

muscles along with FGFR1 (Peters et a!., 1992). FGFR4 and FGFR1 are also the only 

FGF receptors known to be expressed in myoblast cell lines and satellite cells to date. In 

C2 and some other myoblast cell lines, expression of FGFR1 is strongly correlated with 
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the proliferative state, and has been suggested to be not only required to maintain that 

state but obligatorily lost upon differentiation (Itoh et al., 1996). FGFR4, on the other 

hand, seems to have a biphasic expression pattern, being expressed in proliferating cells 

but also in differentiated cells; as opposed to FGFRI, whose expression is stimulated by 

FGF2 and FGF6, expression of FGFR4 is decreased on growth factor stimulation 

(Pizette et aI., 1996). FGFRI can bind FGFI, FGF2, and FGF4; it binds FGF6 with 

low affinity. FGFR4 can bind FGF 1 but not FGF2, and binds FGF6 with high affinity 

(Partanen et al., 1991; Pizette et al., 1996). Ligand:receptor association data for other 

FGFs are not available. 

In accordance with previous studies, I find that C2C12 cells express FGFI and 

FGF2; they also express, at levels detectable by this protocol, FGFs 5, 7, and 10. They 

express FGFR I and FGFR4, also agreeing with published data, but in addition I detect 

FGFR2 and 3 as well. MM14 cells expressed FGFI but not FGF2, which is not 

surprising given their absolute dependence on exogenously supplied FGF2 to maintain 

the proliferative state, which it has been shown can be replaced by transfection of a FGF2 

expression construct. MM 14 cells also expressed FGF6 and FGF7 in the differentiated 

state. The only FGF receptor detected in MM14s is FGFR1, which is also in accordance 

with published data (Olwin et aI., 1994). 

Primary satellite cells express both FGFI and FGF2 upon activation, but unlike 

myotomal cells, express no other FGFs. This finding should not be interpreted as a lack 

of a requirement for other FGFs; indeed, the requirement for at least one FGF (FGF6) in 

satellite myogenesis has been well established. The implication, instead, is that satellite 

cells receive FGF stimulation both in an autocrine fashion (FGF 1 and FGF2) and in a 

paracrine fashion. This pattern fits well with both what is known of FGF signaling 

during embryogenesis and also with current knowledge of the local environment satellite 

cells would experience during regeneration in vivo. 
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Expression of FGFR4 was detected at 0 and 96 hours, but not at 24 or 48; this 

may reflect the biphasic nature of FGFR4 expression reported previously, or may be 

characteristic of a particular state of the population or a subset which is only present 

during quiescence and after the first cell division. Expression of FGFR 1, while it was 

not detected at 0 hours, commenced before 24 hours post-activation and was maintained 

through the remainder of the timecourse. 

Taken together, the data suggest a very early (pre-MyoD expression) role for 

FGF6 signal transduced by FGFR4, which is replaced during the first 24 hours by FGF2 

and FGF 1 acting through FGFR 1. When FGFR4 is re-expressed at 96 hours, it may be 

that all cells, having passed some point, upregulate FGFR4 expression; alternatively, it 

may be expressed only in a subpopulation of satellite cells such as those which will 

continue to proliferate instead of differentiating. 

Insulin-like growth factors and receptors 

Insulin-like growth factors I and II are highly related to each other and to insulin. 

They have been implicated in many anabolic pathways in skeletal muscle including 

protein synthesis, nucleic acid synthesis, and glucose uptake. IGF I expression is low 

during embryogenesis in most tissues. Myogenic cells in the somite show only weak 

hybridization for IGF I message, however they stain more strongly for IGF I peptide and 

express IGFR 1, implying that they have taken up IGF from the surrounding connective 

tissue, which actively secretes IGFs (reviewed in Engert et al., 1996)). IGF mRNA and 

peptide have been detected in regenerating muscle, where it presumably acts as a trophic 

factor to recruit satellite cells to the wound site (Edwall et al., 1989; Jennische et al., 

1987). 

IGF I and IGF II can both bind to the two known IGF receptors, IGFR 1 and 

IGFR2. IGF 1 is a heterotetrameric transmembrane receptor structurally and 

biochemically similar to the insulin receptor. Ligand binding results in activation of both 

Ras-dependent MAP kinase and PI3 kinase (reviewed in (Montarras et al., 1996). 
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IGFR2, also known as mannose-6-phosphate receptor, is a single-chain transmembrane 

protein which is involved in transport of lysosomal enyzymes; it modulates IGF activity 

by internalizing molecules of growth factor and removing them from the cellular 

environment (reviewed in Stewart and Rotwein, 1996). In the muscle system, IGFRI is 

considered to be the mediator of IGF signaling. 

Null mutations of IGF I result in mice with a 60% decrease in size and 

concomitant reduction in skeletal muscle, while null mutations of IGF II have no muscle 

phenotype, possibly due to complementation by IGF I. IGF I has been suggested to be 

an anti-apoptotic factor, and IGF II will rescue apoptotic muscle cells in mdx mice 

(reviewed in Engert et at., 1996). 

The impetus for studying their effects on satellite cells comes not from their 

embryonic expression, where they are required for preimplantation development but are 

not specifically associated with myogenesis, but from their role in myogenesis of muscle 

cell lines in vitro. While they are referred to as growth factors due to their mitogenic 

effects on many cell types, they have been known for some time to stimulate 

differentiation in myogenic cell lines. C2C12 myoblasts express low levels of IGF II; 

when they are moved into differentiation medium expression of IGF II is strongly 

upregulated. This autocrine stimulation is essential for successful differentiation (FIorini 

et aI., 1991). Expression of IGF II and MyoD appear to be mutually dependent: blocking 

either one with an antisense construct results in the levels of both transcripts being 

drastically reduced. Although in both cases the amount of myfS transcript is greatly 

increased, the cells do not differentiate. The basal expression of IGF II in myoblasts is 

also required for maintenance of MyoD expression (Montarras et at., 1996). Later 

experiments showed that IGF II antisense has no apparent effect on C2C 12 cells in 

growth medium but promotes apoptotic death within 12-16 hours of the switch to 

differentiation medium, implying a role as a survival factor in the switch from 

proliferation to differentiation. Cells could be rescued by addition of insulin, IGF I, or 
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IGF II, and would then go through one round of cell division, then terminally 

differentiate (Stewart and Rotwein, 1996). 

The dual effects of IGF on myoblasts were further elucidated by studies showing 

that IGF's mitogenic effects and pro-differentiation effects are sequential and separable. 

IGF-I stimulation initially increases levels of D-type cyclins, which return to normal 

levels within 48 hours, while it has the opposite effect on MyoD and myogenin, 

transiently downregulating their expression. Cells so treated will proliferate longer than 

untreated cells, but will then enter an accelerated and enhanced state of myogenic 

differentiation such that the end result is more and larger myotubes (Engert et al., 1996). 

This finding was expanded upon with biochemical studies of IGFRI in which it was 

found that inhibiting the Raf/Ras/MAP kinase pathway inhibited IGF-induced 

proliferation but led to greatly enhanced myogenesis, while inhibition of PI3 kinase 

activity inhibited IGF's pro-differentiation effects (Coolican et al., 1997). 

The data for this section are summarized in Table 3. By RT-PCR, C2C12 cells 

express IGF I and IGF II as has previously been reported, as do MM14s for which no 

data has been published. C2C 12 cells express both receptors under both growth and 

differentiation conditions, while MM14 cells express neither receptor under growth 

conditions but both under differentiation conditions. 

Primary satellite cells express IGFR1 and IGFR2 but do not detectably express 

either IGF I or IGF II. In this respect they resemble myotomal myoblasts more than they 

do either cell line, and do not appear to have a need for autocrine IGF stimulation in order 

to make the transition from proliferation to differentiation. Given the extracellular 

environment which surrounds satellite cells during wound repair, it is likely that a non

satellite cell source of IGFs is available and active during a regeneration response. This 

assumption is supported by the finding that IGF I peptide can both be localized in satellite 

cells in situ after injury (Jennische et at., 1987), and IGF I mRNA is in the tissue (Edwall 

et al., 1989), but does not explain why IGF I was not detected by RT-PCR when some 
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satellite cells in the previous reference were positive for IGF I message by S35 in situ. 

hybridization. I would suggest that, as in the embryo, autocrine IGF expression in 

satellite cells is low-level and possibly only in a fraction of the population; in support of 

this, when immunostaining and autoradiography are compared in both references, there 

are apparently many more immunoreactive satellite cells than there are satellite cells with 

silver grains. 

Platelet-derived growth factors and receptors 

Platelet-derived growth factors, or PDGFs, were first discovered as components 

of platelet ex-granules with mitogenic activity for arterial smooth muscle cells and 

fibroblasts; they have since been shown to be produced by a variety of normal and 

transformed cell types. Active factors are dimers of any of the three possible 

combinations of two different but related subunits, PDGF-A and PDGF-B. These three 

isoforms differ in their functional properties as well as their secretability: PDGF-AA and 

PBGF-AB are readily secreted from producing cells, while the PDGF-BB variant mostly 

remains in the cell where it is produced. Genes whose expression is induced by PDGF 

stimulation include matrix and cytoskeletal proteins, growth-promoting and growth

inhibitory factors, and transcription factors such as c-fos, c-myc, c-jun, and c-myb 

(reviewed in Heldin and Westermark, 1990). 

Two receptors for PDGFs, with different ligand specificities, have been 

identified: PDGFexR binds PDGF-AA, PDGF-AB, and PDGF-BB with high affinity, 

while PDGF~R binds PDGF-BB with high affinity, PDGF-AB with low affinity, and 

PDGF-AA not at all. PDGF receptors have tyrosine kinase activity which is activated by 

ligand binding and receptor dimerization and trans-phosphorylation. Known intracellular 

targets for PDGF receptor phosphorlyation are PLC-y, PI3 kinase, and Rafl (reviewed 

in Heldin and Westermark, 1990). 

The influence of PDGF on myogenesis is less definite than that of, for example, 

the fibroblast growth factors, and has been less well studied. In C2C 12 myoblasts, 
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PDGF stimulation increases the index of 3H-thymidine labeling, possibly by reducing the 

time required to cycle (Yablonka-Reuveni et ai., 1990). This effect was seen most 

strongly with PDGF-BB, less so with PDGF-AB, and not at all with PDGF-AA, which 

was interpreted to mean that C2C 12 cells express high levels of PDGFaR and low levels 

of PDGF~R subunits. Further studies (Yablonka-Reuveni and Rivera, 1997) indicated 

that this effect is quite mild, and is strongly affected by other factors such as culture 

density which can abrogate the mitogenic effect. 

The data for this section are sumarized in Table 3. C2C12 cells in this study 

express both PDGFaR and PDGF~R, under both growth and differentiation conditions. 

C2C12 cells also expressed both PDGF-A and PDGF-B under both growth and 

differentiation conditions. Consistent with previous analyses, MM14 cells do not 

express either PDGF receptor; however, they do express both PDGF-A and PDGF-B 

under growth conditions, downregulating PDGF-B but not PDGF-A when switched into 

differentiation medium. 

Stimulation by PDGFs appears to be a late andlor minor component of satellite 

cell progression, as expression of both receptors is not detected until late in the response 

(96 hours in culture); positive pools were detected at frequencies sufficient for a positive 

score but much rarer than the norm for many genes. Autocrine expression of either factor 

was never detected at any timepoint. 

Positive regulators of the cell cycle: cyclins and cyclin-dependent kinases 

Cells are driven through the cell cycle in response to mitogen stimulation by 

cyclins and their catalytic partners, the cyclin-dependent kinases (cdks), a family of 

SerlThr kinases which are dependent on cyclin binding for activity. These proteins are 

especially important in the context of the growth vs. differentiation decision which must 

take place before cells pass the G lIS boundary, also known as START or, in mammalian 

cells, the restriction point (reviewed in Hunter and Pines, 1994; Sherr, 1993). The 
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cyelin-cdk complexes expressed during the G 1 phase are the D-type cyelins, D 1, D2, and 

D3, which will usually form complexes with the cyclin-dependent kinase cdk4. 

Expression of the D-type cyelins is strongly growth factor-dependent, and both the RNA 

and protein have a very short half-life, leading to the suggestion that they may act as 

growth factor sensors (reviewed in Hunter and Pines, 1994). Most cells express a 

combination of cyclin D3 and either cyelin Dl or cyelin D2, in a lineage-specific manner 

(reviewed in Sherr, 1993). The mechanism of cyclin D-cdk promotion of the cell cyele is 

thought to involve phosphorylation of the retinoblastoma protein (Rb), and possibly the 

related proteins pl07 and p130. Rb then binds to and inhibits transcription factors such 

as E2F, which are required for initiation of DNA synthesis (reviewed in Hunter and 

Pines, 1994). 

In the context of skeletal myogenesis, in which cell proliferation and 

differentiation are mutually exclusive programs, expression of cyelin D 1 and later D2 and 

D3 was shown to promote continued proliferation even in the absence of mitogens, and 

to inhibit MyoD-induced expression of the differentiation marker musele creatine kinase 

(MCK) by phosphorylating MyoD (Rao et aI., 1994; Guo and Walsh, 1997). When 

C2C12 cells are placed in low-mitogen differentiation medium, the levels of cyelin Dl 

mRNA and protein drop precipitously, however cyelin D3 expression transiently 

decreases then returns to the same or higher level of expression, suggesting it may have 

some functions in differentiating cells distinct from cell cycle promotion (Rao and Kohtz, 

1995). cdk2 expression is downregulated during myogenic differentiation, while cdk4 

expression levels do not change (Walsh and Perlman, 1997). 

Cyclin E, and more rarely cyelin A, are thought to act after the D cyclins at the 

G liS boundary itself and to be important in initiation of replication (reviewed in Hunter 

and Pines, 1994). They also phosphorylate Rb, p107, and p130, which until recently 

were the only known substrates for cyelin E-cdk2. Unlike the D-type cyelins, ectopic 

expression of cyclin E alone cannot divert cells from myogenesis to proliferation, but 
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coexpression with its active partner cdk2 can do so (Guo and Walsh, 1997). It is also 

interesting to note that while expression of a dominant-negative form of cdk4 (the 

preferred cdk of D-type cyclins) cannot arrest cycling cells, expression of a dominant

negative cdk2 (which pairs with cyclin E) will arrest cells in G 1 (Heuvel and Harlow, 

1993). A very intriguing result was recently published in which it was discovered that 

Id2 is also a substrate for cyclin E-cdk2 complexes, and that its phosphorylation occurs at 

the G liS boundary and renders it incapable of binding to MyoD (and possibly E proteins 

as well) CHara et aI., 1997), leading to cell cycle arrest in G 1, thus linking the cell cycle 

and myogenesis. This followed studies which concluded that Id proteins are somehow 

required for G 1 progression, along with E proteins, in a mutually dose-dependent 

manner (Peverali et al., 1994), however the mechanisms involved are still not clear. 

The data for this section are summarized in Table 4. In this study, the C2C12 cell 

line expresses all three D-type cyclins, as well as cdk2, cdk4, and cdk 5 when in high

mitogen medium; when switched to low-mitogen differentiation medium expression of 

cyclin D 1 and D3 are still detected, as are all three of the cdks. Expression of cyclin E, 

which is detected under growth conditions, disappears under differentiation conditions. 

In MM 14s, cyclin D3 and cyclin D 1 but not cyclin D2 are expressed under growth 

conditions, consistent with the finding that most cell types will prefer to express cyclin 

D3 and either D 1 or D2 and that, for myoblasts, cyclin D 1 seems to be the most potent. 

Satellite cells, like MM 14s, seem to preferentially express cyclins D 1 and D3 once 

cell proliferation has been initiated; however, they appear to be forming complexes with a 

less-often used pairing partner, cdk4, as cdk2 and cdk5 were not detected in this study. 

Cyclin E, which normally regulates passage from G 1 into S, is not expressed by satellite 

cells. Presumably, cyclin A-cdk4 is acting in place of cyclin-E-cdk4 in this function, a 

substitution which is unusual but not unheard-of (Resnitzky et al., 1995) and for which 

there is at least some evidence in C2C12 cells (Guo et at., 1995). It may also explain 

why attempts to immunolocalize Cyclin E to C2C 12s and satellite cells have failed; such 
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failures were usually attributed to the assumed transience of cyelin E expression (i.e. 

Yablonka-Reuveni and Rivera, 1997) 

Negative regulators of the cell eyele: eyelin-dependent kinase inhibitors 

The cell cycle promoting activities of cyclin-cdk complexes are negatively 

regulated by stoichiometric interactions with two families of cyelin-dependent kinase 

inhibitors, or CDIs. CDls can act as tumor suppressors by mediating G 1 arrest and/or 

apoptosis, and as such are frequently deleted or inactivated in cell lines and primary 

tumors. They also act to arrest cells in response to mitogen deprivation, contact 

inhibition, stimulation by anti-proliferation factors, and differentiation signals (reviewed 

in (Walsh and Perlman, 1997) Walsh and Perlman, 1997). 

The pI6/INK4 (for inhibitor of cdk4) family of CDls ineludes p15, p16, pIS, 

and p 19; they share structural homology such as four conserved ankyrin repeat motifs, 

and all appear to act to induce cell cycle arrest in G 1 by binding to cdk4 or cdk6 at the 

expense of D cyelins and do not bind to other cdks or any cyclins (Hall et aI., 1995). At 

least for p 16 and piS, INK4 action is only effective in cells in which Rb is present in its 

hypophosphorylated, growth-suppressive form (reviewed in Sherr and Roberts, 1995). 

pI6/INK4a is expressed at very low levels or not at all during embryogenesis and early 

postnatal development, and during adulthood is only expressed in spleen, lung and liver 

(Zindy et at., 1997). Expression of p16 can counteract cyelin Dl inhibition of MyoD

induced differentiation, linking cell cycle regulation and myogenesis (Rao et aI., 1994; 

Rao and Kohtz, 1995; Skapek et aI., 1995). p 16-null mice have abnormal hematopoiesis 

and are susceptible to sarcomas and lymphomas (reviewed in Yan et at., 1997). 

pI5/INK4b is also not detected prenatally, and is later expressed primarily in testis and 

lung (Zindy et al., 1997). It is induced upon differentiation or upon stimulation with 

TGF-~ (Hannon and Beach, 1994). pIS/INK4c is expressed during mid to late 

embryogenesis, and in adult tissues including kidney, lung, heart, and skeletal musele 
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CZindy et al., 1997). It is expressed ubiquitously in proliferating cultured cells and in 

normal mouse tissues (reviewed in Sherr and Roberts, 1995), and is upregulated in 

differentiating myoblasts (reviewed in Walsh and Perlman, 1997). It may have a 

function in maintaining the differentiated state (Zabludoff et ai., 1998). p 19IINK4d (not 

to be confused with p 19ARF, a protein generated from an alternate open reading frame 

within the p16INK4a locus), is expressed from early embryogenesis and is widely 

expressed in many adult tissues (Zindy et al., 1997). Its expression is downregulated in 

differentiating myocytes (reviewed in Walsh and Perlman, 1997). Its specific functions 

apart from those shared by the entire family remain largely unclear. 

The p21/Cip/Kip family of CDIs includes p21, p27, and p57; they also function 

to arrest cells in G 1 but do so by binding to cyclins or cyclin-cdk complexes, not to 

uncomplexed cdks (Hall et ai., 1995). p21, also called Cipl and Waf!, is induced in a 

p53-dependent manner in response to DNA damage, and through a p53-independent, 

MAP kinase-mediated pathway in response to mitogen deprivation or differentiation cues 

(Liu et al., 1996). It is expressed in differentiating cells and has been implicated in 

cellular senescence and protection from apoptosis in differentiating myocytes (Wang and 

Walsh, 1996). p21 is strongly upregulated during myogenic differentiation in the 

embryo, as well as in cultured myoblasts upon serum deprivation, and remains high even 

if the cells are restimulated with mitogens, implying it has a role in maintenance of 

differentiation-induced withdrawal from the cell cycle (reviewed in Walsh and Perlman, 

1997). p21 also contains a domain which directly binds to the proliferating cell nuclear 

antigen (PCNA) and directly inhibits entry of the cell into S-phase (Watanabe et at., 

1998). p21 has been implicated in integration of Raf signaling to cause either 

proliferation or cell cycle arrest (Woods et al., 1997; Sewing et al., 1997) and B RCA 1-

induced cell cycle arrest (Somasundaram et al., 1997). p21-null mice have no 

developmental defects and are not abnormally susceptible to tumors (reviewed in Yan et 

al., 1997). p27, also called Kip1, is expressed in quiescent cells, downregulated upon 
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re-entry into the cell cycle, and up regulated in differentiating cells (reviewed in Grana and 

Reddy, 1995). It is induced by stimulation with TGF-~, by serum deprivation, and by 

contact inhibition (reviewed in Katayose et al., 1997).. During embryogenesis, it is 

expressed in myotomes and is thought to have a transient role during the transition from 

proliferation to differentiation during myogenesis (Zabludoff et al., 1998). 

Overexpression of p27 in cultured myogenic cells greatly enhanced MyoD-induced 

myogenesis (Zabludoff et al., 1998). p27-null mice are larger than wild-type, 

presumably due to failure of cells to exit the cell cycle properly (reviewed in Yan et al., 

1997). In human cancer cells, overexpression of p27 promotes apoptosis CKatayose et 

aI., 1997), but the relevance of this result to untransformed cells expressing normal levels 

of p27 has yet to be determined. pS7/Kip2 has homology to p21 and p27 but also has 

unique domains. It is expressed during mid-embryogenesis in newly differentiated 

neurons, myotomes of somites and cardiac muscle; at later times it is expressed in a 

variety of postmitotic tissues (Yan et al., 1997). Null mutations of pS7, unlike those of 

pIS, p16, p18, and p21, exhibit embryonic malformations which in highly penetrant 

forms are lethal at birth CYan et al., 1997). Expression of pS7 is associated with 

terminally differentiated, non proliferating cells and appears to have an antiapoptotic effect 

CYan et al., 1997). 

It should be noted that most studies of these proteins have been performed in 

transfected tissue culture lines, in which they are expressed at superphysiologicallevels, 

or in virally transformed or tumor cells, in which they are often inactivated or deleted. In 

the course of the cell cycle in normal cells, they are tightly regulated in response to 

various checkpoints but do allow cell cycling even when actively expressed, unless the 

cell fails a checkpoint assessment or is receiving external signals to cease proliferating 

and/or to differentiate. 

The data for this section are summarized in Table 4. In C2C12 cells assayed 

here, p18, p19, p21, and p27 are expressed by cells in growth medium; all CDI's 
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assayed for were expressed in differentiating cells. MM 14s expressed p 19 and p21 in 

growth medium, and pIS, p21, and p27 in differentiation medium. Given that pIS is 

suspected to act as a maintenance factor for terminal differentiation, p21 is present in 

cycling myoblasts and upregulated in differentiating myocytes, and p27 is upregulated 

during mitogen withdrawal and the switch from proliferation to differentiation, the only 

puzzling factor is the lack of expression of pS7, which is usually strongly associated with 

terminal myogenic differentiation. 

Satellite cells expressed pIS at all times surveyed, and upregulated p 18, p21, 

p27, and pS7 over the course of differentiation. The significance of the pIS expression is 

unclear; pIS has been implicated in TGF~-induced cell cycle arrest, which also induces 

myogenic differentiation in cultured myogenic cell lines (Hannon and Beach, 1994), 

however why it should be expressed so ubiquitously is not apparent. The lack of 

expression of p27 at very early timepoints is distinctive when compared to other types of 

quiescent cells. Either activation had progressed sufficiently by the time the cells were 

harvested that p27 levels had already been downregulated, which is possible but unlikely 

as proliferating cells still express basal levels of p27, or p27 is not a factor in maintaining 

quiescence in satellite cells. 

Cell signaling and cell fate determination molecules 

Many of the genetic and molecular pathways involved in cell-cell signaling 

leading to the adoption of different fates by equivalent neighbor cells have been best 

studied in Drosophila. Their mammalian homologs, often appearing in families in which 

the function of a single Drosophila gene has been distributed and elaborated, are now 

being studied to elucidate parallel signalling pathways in mammalian embryos. While 

many of these genes have been best studied in the developing nervous system of both 

flies and mammals, they often have functions during somitogenesis and/or myogenesis. 

The mechanisms by which satellite cells separate into populations of proliferating, 
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differentiating, and possibly 'pre-quiescent' cells, are unknown. Possibly one or more 

cell-cell signalling pathway is involved, either among satellite cells or between satellite 

cells and some other cell type. Therefore, I investigated the expression patterns of 

several of these gene families over the timecourse of satellite cell activation. 

Mammalian Notch, Serrate, and Delta homologs 

Drosophila Notch, Serrate, and Delta proteins are related transmembrane proteins 

which act together to restrict cell fate in neighboring cells via cell-cell signaling and 

feedback loops. A well-characterized system requiring these genes is the specification of 

neuroblasts from precursor populations (equivalence groups) all of which are equally 

competent to become neuroblasts. In each group, the single cell which will become the 

neuroblast will express Delta, a signal which is received by Notch expressed on 

neighboring cells. Ligand-binding by Notch results in cleavage of the intracellular 

domain, which then becomes localized to the nucleus and acts through several other gene 

products to repress transcription of differentiation-promoting genes. This intracellular 

signaling cascade then feeds back to reinforce the secondary cell fate decision in the 

Notch-expressing cell in a process known as lateral inhibition (reviewed in (Dunwoodie 

et al., 1997). Many other cell types use signaling to Notch via Delta or Serrate 

expression on neighboring cells to specify alternative cell fates in equivalent cells; in these 

tissues as well as in the neural precursors described previously, loss-of-function 

mutations for either ligand or receptor result in the expansion of one cell type at the 

expense of another. 

The four mammalian Notch homologs cloned so far, Notch 1, Notch 2 

(previously known as Motch A and B, respectively), Notch 3, and Notch 4, have not 

only structural homology but also apparently similar functions to their Drosophila 

counterpart: constitutively active forms will inhibit neurogenesis in Xenopus, as well as 

inhibiting myogenesis in Xenopus and cultured mouse myoblasts (reviewed in 

Dunwoodie et al., 1997). This homology also extends to the two mammalian Serrate 
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genes cloned thus far (Jagged-I and 2) and the two mammalian Delta homologs, Dll-l 

and Dll-3. These genes have been shown to be important in neurogenesis, which will not 

be discussed here, and in somitogenesis. Dll-I and Dll-3 are expressed in two stripes in 

the posterior and anterior of nascent somites, respectively, in regions where Notch 

activity is required to establish somite boundaries. Notch I-null mutants have 

disorganized and irregular somite boundaries, supporting this interpretation (reviewed in 

Dunwoodie et al., 1997). In adult tissues, only Notch 1 is detected in skeletal muscle by 

Northern blot (Lardelli and Lendahl, 1993); during embryonic and adult development, 

Notch 3 and Notch 4 are neuronally- and endothelially-restricted, respectively (Lardelli et 

al., 1994; Uyttendaele et al., 1996). 

Within the framework of myogenesis, Notch signaling has been implicated in 

repression of the myogenic phenotype in Xenopus embryos and in cultured myoblasts, 

and appears to act by interfering with activation of target genes by MyoD, based on 

studies of a constitutively active form of Notch (Kopan et al., 1994). Similar results 

were obtained by coculture of Notch-expressing C2C12 cells with Jagged-l (rat Serrate-

1) expressing fibroblasts: even under differentiation conditions, the C2C12 cells failed to 

differentiate (Lindsell et al., 1995). 

The data for this section are summarized in Table 5. In this study, C2C12 cells 

detectably expressed Notch I, 2, and 3, under both growth and differentiation 

conditions. MM14 cells, however, only expressed Notch 1, which is the most 

prominently-expressed family member in embryonic and adult myoblasts. C2C12 cells 

expressed Jagged-2 and Dll-l but not Dll-3 in both conditions, as did MM14 cells. 

Satellite cells expressed Notch 1 and Notch 2, over the entire course of the 

differentiation response. If interpreted according to the current theory of Notch function, 

this would imply that at least a fraction of satellite cells at all times in a regeneration 

response are capable of receiving anti-differentiation signals. As satellite cell pools at all 

timepoints are also positive for Dll-l (but, interestingly, never express Dll-3) there may 
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be a mixture of 'sending' and 'receiving' cells. Alternatively, both ligand and receptor 

may be coexpressed by the same population of cells at some or all timepoints, requiring 

cell-cell signalling-induced feedback loops to modulate expression of both genes and 

subsequently direct alternative cell fate decisions. Jagged-2, which is also expressed at 

all times post-activation, may also playa role in addition to or in concert with Delta in 

activation of Notch proteins. 

Mammalian Fringe homologs 

Drosophila Fringe is a signaling protein which has homology to bacterial 

glycosyltransferases. It acts to establish wing margin formation at Notch-ligand 

boundaries, possibly by altering glycosylation of other proteins on the surfaces of or 

secreted by neighboring cells. Three mammalian homologs have been cloned, Radical 

fringe, Lunatic fringe, and Manic fringe. Their expression also defines boundaries 

between Notch ligands (i.e. between areas of Dll-l expression and areas of Jagged-l 

expression). During somitogenesis, Lunatic fringe is highly expressed in two stripes 

defining the anterior and posterior boundaries of each somite as it forms, as well as in the 

myotome and proliferating and/or undifferentiated neural progenitor cells. Conversely, 

Radical fringe and Manic fringe are expressed in differentiated cells, often physically 

juxtaposed with less-differentiated Lunatic fringe-expressing cells. In addition to 

somitogenesis, these patterns appear in the neural ventricular and marginal zones, the 

thymic cortex and medulla, and a variety of other tissues; in all cases expression 

coincides with a Notch-ligand boundary. It is proposed that the mammalian fringe 

proteins are differentially required to activate Notch signalling in such border domains 

(Cohen et al., 1997). 

The data for this section are summarized in Table 5. Consistent with the somitic 

expression pattern, Lunatic fringe (which is associated with proliferating or 

predifferentiated cells) was detected in this study in C2C 12 cells under growth 

conditions, while it was not detected under differentiation conditions. Manic fringe, 
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which is associated with terminally differentiated cells, was expressed in the reciprocal 

pattern. Radical fringe, which is also associated with differentiated cells, was detected 

under both conditions. Data do not exist regarding the relative strength and abundance of 

Radical fringe vs. Manic fringe; it may be that Radical fringe is more widely expressed or 

less strongly associated with the differentiated state, or that this highly sensitive RT -PCR 

assay detects expression from the small percentage of differentiating cells unavoidably 

present even under growth conditions. 

Satellite cells express Radical fringe within 24 hours of activation but not when 

quiescent or freshly isolated; this is accordance with the association of Radivcal fringe 

with the more differentiaed state in other cell types. Manic fringe, which is also 

associated with differentiation, was never detected in satellite cells. Strangely, Lunatic 

fringe, which is instead associated with predifferentiated cells, is not detected in freshly 

harvested satellite cells or at24 or 48 hours after activation, but only at the 96 hour 

timepoint. The meaning of this is unclear; one possible explanation would be that by this 

time in culture, expression of Lunatic fringe is required to modulate Notch signaling in 

order to maintain cells in proliferation due to widespread expression of myogenin and 

MRF4. 

Mammalian Numb homologs 

Drosophila numb is a gene which has only recently been cloned and characterized; 

it encodes a membrane-associated protein which becomes asymmetrically distributed 

prior to cell division, such that one daughter cell receives the Numb protein and one does 

not. This differential distribution leads to alternative cell fates, mediating intrinsically the 

same sort of decisions mediated extrinsically by Notch-Delta signaling (Rhyu et al., 

1994). Indeed, during Drosophila myogenesis, in which numb is required to segregate 

cell fate in the terminal division of myogenic precursor cells, numb acts to antagonize 

Notch-mediated transcriptional repression (Gomez and Bate, 1997; Carmena et al., 

1998). This is very similar to Drosophila neurogenesis, in which selection of alternate 
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cell fates during the two asymmetric divisions of a sensory organ precursor cell are 

mediated by Numb distribution in a Notch-dependent manner (Guo et al., 1996; Spana 

and Doe, 1996). 

Two mouse homologs of Numb have been cloned, Numb and Numblike. While 

numb function has been better studied, both can complement Drosophila numb mutant 

phenotypes and, when overexpressed, can induce phenotypes typical of numb 

overexpression (Verdi et al., 1996; Zhong et aI., 1997). The expression and function of 

numb in mammalian neurogenesis appear to be equivalent to the Drosophila counterpart, 

however numblike has a more restricted expression pattern and is not asymmetrically 

localized on dividing cells, implying that it may have unique functions. 

Mammalian numb is broadly expressed in the developing embryo, and is 

expressed in adult tissues including kidney, gut, lung, heart, brain, spleen, and liver, but 

skeletal muscle expression is extremely weak or not detected (Verdi et aI., 1996; Zhong et 

al., 1997). Numblike is only expressed in areas of the embryonic and adult nervous 

system, and there its expression is restricted to a subset of numb-expressing cells which 

are more differentiated (Zhong et at., 1997). 

The data for this section are summarized in Table 5. RT-PCR shows that both 

C2C12 cells and MM14 cells express Numb under both growth and differentiation 

conditions, while both cell lines only express numblike when differentiated. Satellite 

cells as well express Numb at all times, while expression of numblike is upregulated 

concurrently with differentiation in the population. Numb protein expression is also 

detectable in some but not all satellite cells at different timepoints (data not shown); its 

expression appears to be uniform across the cell surface rather than positionally 

restricted, as seen in other mammalian cell types assayed with this immune reagent (Verdi 

et aI., 1996). Little is known about the biological function of numblike, especially 

outside the context of neurogenesis, but numb like does appear to be associated with 

more-differentiated cells (Zhong et aI., 1997). These factors may conceivably have a role 
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in specifying, via interactions with expressed Notches or other factors, the proliferation 

program versus differentiation, or may have a role in maintenance of the satellite 'stem 

cell' population, or both. 

Markers of embryonic myogenesis 

Pax-3 

Pax genes, which are homologs of Drosophila paired, encode transcription 

factors which individually play roles in determination and morphogenesis in a number of 

different tissues. One of these family members, Pax-3, is expressed in MRF-negative 

myoblasts during embryonic myogenesis. While myotomal cells downregulate Pax-3 

expression just prior to or immediately following activation of the first MRF to be 

expressed, cells resident in the ventrolateral portion of the dermomyotome, which will 

delaminate and migrate laterally to populate the limb buds, maintain Pax-3 expression 

until they reach their destination and upregulate MRFs (Williams and Ordahl, 1994). In 

the absence of Pax-3 activity these cells fail to migrate and instead differentiate in the 

somite (Daston et a!., 1996). One function of Pax-3 in these cells was elucidated with the 

findings that the activity of the c-met receptor tyrosine kinase is required for this 

migration (Bladt et a!., 1995), and that Pax-3 activity is necessary and sufficient for c-met 

expression in these cells (Epstein et al., 1996). Another possible function which has 

been suggested more recently is that Pax-3, in parallel with myf5, is upstream of MyoD 

in the genetic hierarchy (Tajbakhsh et a!., 1997). This result was based on the analysis 

of embryos carrying null mutation of both Pax-3 and myf5, and the observation that these 

embryos, unlike either of the singly-homozygous mutants, almost entirely lack body 

muscles and fail to express MyoD. 

The data for this section are summarized in Table 5. Given that Pax-3 is essential 

for c-met expression in the myogenic precursors of the limbs, which are in many ways 

very similar to satellite cells in that they are committed but predifferentiated, proliferative, 
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migratory, MRF-negative myogenic precursor cells, and that it is important in initiating 

expression of MyoD, whose expression appears to be required for satellite myogenesis 

(Megeney et al., 1996), Pax-3 expression was predicted in satellite cells. However, 

neither C2C12 cells, MM14 cells, or satellite cells ever detectably expressed Pax-3 in this 

study. The Pax-3-specific primers, like all primers used here, amplified an appropriate 

band from cDNA samples known to be positive (in this case, e 10.5 embryonic cDNA.) 

What are possible explanations for this counterintuitive failure to express Pax-3? 

In the case of c-met, the cis-regulatory sequences are sufficiently complex as to allow c

met expression in a large array of widely different cell types. It would arguably be more 

reasonable for satellite cells, which exist in a very different environment than embryonic 

myogenic precursor cells, where they are probably exposed to a different array of stimuli 

and serve a very different function, to have different factors which will promote c-met 

expression as well. The observations here and elsewhere that c-met expression, while it 

occurs initially when satellite cells are in an MRF-negative state, persists well into a 

regeneration response over many days of active MRF expression also support this 

argument. The question of a requirement for Pax-3 or myf-5 to activate MyoD cannot 

directly be studied in satellite cells at this time, as such doubly-homozygous embryos die 

in utero and satellite myogenesis is a phenomenon of the adult animal. However, given 

that expression of the different MRFs in satellite cells occurs with different timing and 

sequence than in either type of somitic myoblast (Cornelison and Wold, 1997), and that 

the functions of MyoD and myf5 differ at least in that there appear to be nonredundant 

requirements for MyoD expression during satellite myogenesis (Megeney et at., 1996; 

Chapter 4, this work), the requirement for Pax-3 expression may also be different in 

these cells. 

Msx-l 

The Msx genes, a small family of genes resembling the Drosophila muscle 

segment homeobox (msh) gene are an ancient family of homeobox-containing genes, 
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present in species ranging from coelenterates to mammals with an extremely high degree 

of homology in the homeobox domain, although quite divergent elsewhere. This 

similarity and their tendency to be expressed early in the differentiation of diverse tissues 

suggests a fundamental role in development which has been evolutionarily conserved. In 

the mouse, two members of this family, Msx-l and Msx-2, have been cloned and 

characterized; a third, Msx-3, was cloned only recently and is not well-studied. Msx-1 

and 2 are widely expressed in mostly overlapping patterns during embryogenesis, usually 

in regions of epithelial-mesenchymal interactions, including the primitive streak, lateral 

mesoderm, dorsal ectoderm, neural plate, dorsal neural tube and brain, cranial neural 

crest cells, branchial arches, facial processes, tooth germs, eye, ear, nose, vibrissae, 

heart, pericardium, limb bud, and tail. Surprisingly, given this widespread expression, 

null mutants of Msx-l die perinatally of defects in derivatives of the first branchial arch; 

no other defects are noted (reviewed in Davidson, 1995). 

Functionally, Msx-l appears to act as a transcriptional repressor, however this 

function is not dependent on DNA binding by the homeodomain and appears instead to 

involve direct interaction with the basal transcriptional apparatus (Catron et ai., 1996). 

This effect was strongly heightened in transfected C2C 12 celis, where other factors 

present in sites of endogenous expression (such as limb bud) might be positively 

influencing Msx-l activity. Forced expression of Msx-l in cultured myoblasts led to 

inhibition of differentiation, including repression of MyoD expression, and acquisition of 

a transformed phenotype; Msx-2 did not have this effect (reviewed in Davidson, 1995). 

In the limb bud, Msx-l is expressed in migrating myogenic precursor cells and is 

dependent on signals from the limb ectoderm as well as cell-cell interactions for 

maintenance of expression. Signals which have been shown to induce Msx-l expression 

in the limb bud in the absence of ectoderm include BMP-2, BMP-4, FGF2, and FGF4 

(reviewed in Davidson, 1995). Msx-l is also associated with tissue and organ 

regeneration in urodeles, chick, and mouse, in that its expression is reactivated in 
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regenerating newt blastemas (Crews et al., 1995) and successfully (but not 

unsuccessfully) regenerating chick limbs (Kostakopoulou et al., 1996) and is required 

for mouse digit tip regeneration (Reginelli et al., 1995). 

The data for this section are summarized in Table 5. In this study, Msx-l 

expression is detected in both C2C12 and MM14 cells under both growth-promoting and 

differentiation-promoting conditions. Satellite cells, which due to their similarities to 

limb myoblasts might be proposed to express Msx-l, do indeed do so but only at 

extremely early timepoints «30 minutes post-fiber isolation.) The implication is that 

quiescent satellite cells express Msx-l but quickly downregulate its expression once 

activated. In limb myoblasts which downregulate Msx-1 when dissociated, extinction of 

expression occurs within 30 minutes (D. Sassoon, pers. comm.) Thus, in the best case, 

expression of Msx-1 may prove to be a molecular marker for quiescent satellite cells, or 

satellite cells destined to re-enter quiescence after a regeneration response. 
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Conclusions 

Cricket, not baseball 

Many of the genes and gene families whose expression, based on the current 

knowledge of my ogene sis in the embryo and on studies of myogenic cell lines, was 

predicted to be a component of satellite myogenesis were indeed detected in satellite cells 

undergoing a regeneration response in culture. However, other genes considered critical 

for myogenesis in the embryo are not expressed by satellite cells, and even genes likely to 

be filling similar or identical functions in embryonic and satellite myogenesis exhibit 

subtle differences in their expression. Clearly, the program of satellite myogenesis under 

the specific culture conditions used is unique and distinct from those of the developing 

embryo and of myogenic cell lines. 

In order to further define the interactions within and among the genes surveyed, 

analysis at the single-cell level should be very informative. Combinations to be assayed 

should include the MRFs and the Ids, to determine the degree of correspondence of 

expression in general, and the degree of preference, if any, for specific combinations, 

and the MRFs and MEFs. Single-cell analysis of the suite of cell cycle regulatory 

factors, in combination with each other and with other families such as MRFs and growth 

factor receptors, may also yield information concerning the coregulation of proliferation 

and differentiation. Combinatorial analysis of components of the Notch signalling 

pathway should also prove interesting, especially between satellite cells in contact with 

each other (probable siblings). 

In addition, this technique should be applicable to not only fiber-associated 

satellite cells, but also myogenic cells in the developing embryo via cell sorting or patch

clamp harvest from living sections. When the same combinatorial measurements can be 

made at the single-cell level for all primary myogenic cells, general and specific programs 

of myogenesis can be formulated and compared. 
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Figure 1: Cartoon depicting the single-cell harvest, RNA pooling, reverse-transcription 

and RT-PCR analysis used in this study. 
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Pool collection for gene survey 

30 individually-harvested satellite cells 

One 30x cDNA reaction 

peR single-cell equivalents for 30 genes of interest 



123 

Figure 2: Representational depiction of coexpression states of single satellite cells for c

met, m-twist, MyoD, mty5, myogenin, and MRF4 from 12 to 48 hours of fiber culture. 
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Table 1: Primer sets used in this study. All primers are written based on mouse cDN A 

sequence from GenBank using Lasergene (DNAstar). All outside primer sets were 

written to cross at least one intron to distinguish cDNA template from genomic DNA. 
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Table 2: Summary of detected expreSSIOn of positive and negative regulators of 

myogenesis in myogenic cell lines and primary satellite cells. 
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Table 2: Positive and negative regulators of myogenesis 

C2C12 MM14 Satellite cells 
G/D G/D II 24 48 96 

MyoD +/+ +/+ + + + 
myf-5 +/+ -/- + + + 
myogelllll +/+ +/+ + + 
MRF4 +/+ -/+ + + 

MEF2A +/+ -/+ + + + 
MEF2B - / - -/-
MEF2C +/+ -/- + + 
MEF2D +/+ -/+ + + + + 
MEF2D-MS +/+ -/+ + + 

Id 1 +/+ -/+ + + + 
Id2 +/+ -/+ + + + 
Id3 +/+ -/- + + + 
Id4 +/+ -/+ + + 

twist +/+ -/- + + 
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Table 3: Summary of detected expression of growth factors and their receptors III 

myogenic cell lines and in primary satellite cells. 



Table 

HGF/SF 
c-met 

FGFI 
FGF2 
FGF4 
FGF5 
FGF6 
FGF7 
FGF8 
FGFIO 

FGFRI 
FGFR2 
FGFR3 
FGFR4 

IGF-1 
IGF-2 

IGFI-R 
IGF2-R 

PDGFa 
PDGF~ 

3: 

PDGFaR 
PDGF~R 
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Growth factors and 

C2Cl2 
G/D 
+/+ 
+/+ 

+/+ 
+/+ 
- / -
+/+ 
- / -
+/+ 
- / -
+/+ 

+/+ 
+/+ 
+/ -
+/+ 

+/+ 
-/+ 

+/+ 
+1+ 

+/+ 
+/+ 

+/+ 
+1+ 

MMl4 
G/D 

-/-
+/+ 

+/+ 
-/-
-/-
-/-

-/+ 
-/+ 
-/-
-/-

+/+ 
-/-
-/-
-/-

-/+ 
-/+ 

-1+ 
-/+ 

+/+ 
+/-

-1-
-/-

growth 

fi 

+ 

+ 

+ 

factor receptors 

Satellite cells 
24 

+ 

+ 
+ 

+ 

+ 
+ 

48 
+ 
+ 

+ 
+ 

+ 

+ 
+ 

96 
+ 
+ 

+ 
+ 

+ 

+ 

+ 
+ 

+ 
+ 
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Table 4: Summary of detected expression of positive and negative regulators of cell cycle 

progression through Gland G liS in myogenic cell lines and in primary satellite cells. 
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Table 4: Positive and negative regulators of the cell cycle 

C2C12 MM14 Satellite cells 
G/D G/D II 24 48 96 

eyeA +/+ +/+ + + + 
eyeDI +/+ +/- + + + 
eyeD2 +/ - -/+ + 
eyeD3 +/+ +/+ + + + 
eyeE +/ - -/+ 

edk2 +/+ +/+ 
edk4 +1+ +/+ + + + 
edk5 +/+ +1+ 

pI5 -/+ -/- + + + + 
p16 -1+ -/-
pI8 +/+ -/+ + + 
p19 +/+ +/-
p21 +/+ +/+ + 
p27 +/+ -/+ + + 
p57 -/+ -/- + + 
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Table 5: Summary of detected expression of cell-cell signaling molecules and markers of 

embryonic myogenesis in myogenic cell lines and in primary satellite cells. 
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Table 5: Cell signaling molecules and markers of embryonic 
myogenesis 

C2Cl2 MMl4 Satellite cells 
G/D G/D !! 24 48 96 

M-Notch 1 +1+ +1+ + + + 
M-Notch 2 +1+ -1- + + + + 
M-Notch 3 +1+ -1-
M-Notch 4 - I - -1-

Dll-I +1+ +1+ + + + + 
Dll-3 - I - -1-

Jagged-2 +1+ +1+ + + + + 

Radical fringe +1+ -1+ + + 
Lunatic fringe +1- -1- + 
Manic fringe -1+ -1-

numb +1+ +1+ + + + + 
numb like -1+ -1+ + + 

Pax-3 - I - -1-

Msx-l +1+ +1+ + 
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Chapter 4 

MyoD-deficient satellite cells are differentiation
defective in vitro, express reduced m-cadherin, 

and fail to express MRF4 
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Abstract 

MyoD-null mice, while without obvious deleterious muscle phenotypes during 

embryogenesis, have recently been shown to have deficiencies in adult muscle 

regeneration. Satellite cells from homozygous null animals are unable to completely 

replace damaged muscle tissue, and in the mdx (dystrophin-null) background the 

dystrophic phenotype is greatly enhanced. It was suggested that mutant satellite cells 

become activated normally, but cannot properly differentiate as replacement muscle, and 

so many satellite cells return to quiescence at the expense of new muscle formation. Here 

I show that, consistent with this hypothesis, satellite cells are present in excess in 

experimentally undamaged MyoD-I- adult skeletal muscle. In fiber-explant satellite cell 

culture, the majority become activated normally, enter the cell cycle and upregulate 

expression of myogenic factors. However, their MRF expression profile is aberrant, and 

they do not successfully upregulate MRF4, the last MRF in the satellite program to be 

expressed in wild-type satellite cells. Mutant satellite cells also show a remarkable lack of 

m-cadherin expression when compared to wild-type. Failure to properly express these 

two genes could account for aspects of their phenotype in vitro and in vivo, including a 

general failure to fuse properly into multinucleate myotubes as well as failure to assume a 

differentiated morphology. Analysis of a panel of genes of potential interest in satellite 

cells and comparison to wild-type reveals other differences in gene expression, one of 

which may be relevant to the return to quiescence in mutant and wild-type satellite cells. 
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Introduction 

Skeletal muscle is formed by myoblast fusion during fetal and neonatal 

development in mice. Myonuclei that have fused into muscle fibers are terminally 

postmitotic and therefore unable to participate in repair of damaged muscle; this function 

is filled by satellite cells (reviewed in (Cornelison and Wold, 1997)Cornelison and Wold, 

1997). Several naturally-occurring cases are known in which satellite cells are, due to 

unknown mechanisms, unable to successfully regenerate damaged tissue. In terminal 

phases of neuromuscular wasting diseases such as Duchenne's muscular dystrophy, 

satellite cells which have previously been able to mediate recovery from acute periods of 

muscle degeneration lose their regenerative capacity, leading to severe muscle atrophy 

and death. In muscle hypotrophy characteristic of aging, it is also suspected that 

previously competent satellite cells have somehow lost at least some portion of their 

regenerative capacity. 

The mouse model of Duchenne's muscular dystrophy, the dystrophin-null mdx 

mouse, shows a less severe phenotype than do human patients due to more active and 

persistent satellite cell activity; these mice experience intense muscle necrosis and 

vigorous regeneration from 21 days to 6 months of age, by which time they return to a 

grossly normal phenotype (Megeney et al., 1996). A mouse mutant which has persistent 

deficiencies in muscle regeneration is the MyoD-null mouse. While they have no obvious 

degenerative phenotype, when bred into a dystrophin-null background, the additional 

lack of MyoD gene expression amplifies the mdx phenotype and leads to premature 

death. In addition, when acutely injured during adulthood, MyoD-null mice show 

deficiencies in muscle regeneration (Megeney et al., 1996). MyoD-null satellite cells in 

crushed muscle become activated, but are unable to properly execute the regeneration 

program. Few replacement myofibers are formed, with the majority of satellite cells 

remaining mononucleate within the damaged area. I was proposed that, in the absence of 

MyoD gene expression, some essential step in myogenic progression was blocked, 
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leading to a population of activated satellite cells which, instead of terminally 

differentiating, returns to a quiescent state. 

Here I present data indicating that in the isolated fiber culture system, MyoD-null 

satellite cells are present in excess over wild-type in experimentally undamaged muscle 

tissue; that they have aberrant morphology during proliferation and differentiation in 

vitro; and that they exhibit major differences in gene expression when compared to wild

type satellite cells. These data then suggest a possible genetic mechanism for the 

differentiation-defective phenotype. Finally, I identify a gene whose expression in 

activated satellite cells may correspond to cells which are re-entering the quiescent state. 
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Materials and Methods 

MyoD homozygous null adult mice were obtained from Dr. M. Rudnicki and 

muscle fibers were prepared and cultured as described previously (Cornelison and Wold, 

1997). Single satellite cells were harvested with a patch-clamp pipette and their cellular 

mRNA was reverse-transcribed as in (Cornelison and Wold, 1997) Single cells were 

assayed for the combined expression of c-met, m-cadherin, myf-5, myogenin, and 

MRF4; cell pools were assayed at the single cell level for expression of a panel of 

regulatory genes (see Chapter 3 for primer sets and methodologies). Total percentages of 

wild-type and M yoD-null satellite cells in each of 16 possible coexpression states were 

analyzed for significance by two-way correlation using Fisher's exact test; p > 0.05 was 

considered to be significant. Analysis was performed in StatView (Abacus) .. 

Immune staining was performed on wild-type and mutant satellite cell cultures 

after 7 days in growth medium (DMEM + 10% horse serum + 5% chick embryo extract + 

antibiotic/antimycotic) followed by 7 days in differentiation medium (DMEM + 2% horse 

serum.) Cells were fixed for 20 min. in ice-cold methanol/acetone at -200 and dried for 

24 hours, then rehydrated in PBS and stained with anti-myosin heavy chain (MF-20, 

Developmental Studies Hybridoma Bank) and detected with anti-mouse HRP and DAB; 

alternatively, they were stained with MF-20 and anti-c-met (Santa Cruz) or MF-20 and 

anti-m-cadherin (Santa Cruz) and detected with donkey anti-mouse FITC and donkey 

anti-rabbit TRITC (Jackson.) Hoechst 33347 was added to the final wash after staining 

to visualize nuclei. 
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Results 

MyoD~/~ satellite cells are present in excess in undamaged muscle 

MyoD-/- satellite cells resident on single explanted myofibers became activated (as 

determined by emergence from under the basal lamina of the host fiber and an increase in 

cytoplasm) within the first 24 hours after harvest similar to wild type. At harvest, 

satellite cells were present in excess over wild-type based on both the number of satellite 

cell nuclei/mm fiber and the ratio of satellite nuclei/myofiber nuclei (Figure 1.) While 

their morphology was basically normal at 24 hours after harvest (Figure 2 a and b), by 48 

hours after harvest they were enlarged compared to wild-type and had begun to aggregate 

abnormally (Figure 2 c and d), and by 96 hours after harvest many mutant satellite cells 

were contained in very large, multicellular calluses adherent to the fibers (Figure 2 e and 

f.) 

At 48 hours, and more strikingly at 96 hours, some MyoD-null satellite cells had 

become associated with depressions in the host fiber, and were in some cases partially 

enclosed by the fiber sarcolemma (Figure 2 g and h.) This phenotype was never 

observed for wild-type satellite celis, and may represent cells which have failed to execute 

the myogenic program and are returning to the sub-laminal position of resting satellite 

cells. 

It was also observed that myonuclei of fibers from MyoD-null mice were shaped 

diferent1y than those of wild-type myofibers: while wild-type myonuclei, expecially when 

freshly harvested, are extremely elongated, myonuclei of mutant fibers were only slightly 

oval (Figure 3a). Nuclei of some MyoD-nuli satellite cells also had unusual morphology 

after several days in fiber culture, becoming teardrop-shaped with a distinct point on one 

end (data not shown). The explanations and significance of these morphological changes 

are unknown at present. Additionally, MyoD-null myofibers were observed to have a 

much greater than normal rate of fiber forking, splitting, and sprouting, a phenomenon 

associated with the pathologies of Duchene's and Becker's muscular dystrophies as well 
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regenerated muscle (Bradley, 1978) (Figure 3b). This is unexpected, as the MyoD-null 

mouse is not considered to have a degenerative phenotype, nor would individuals be 

assumed to have undergone extensive regeneration. Taken together with the excess of 

satellite cells observed in 'undamaged' muscle, these observations suggest that normal 

muscle function in MyoD-null mice is indeed impaired and may have undergone periods 

of injury and partial regeneration which have been undetected thus far. 

MyoD-I- satellite cells are differentiation-defective in vitro 

When MyoD-I-satellite cells which had become adherent to the culture plate 

during fiber culture were subsequently cultured in differentiation medium and assayed for 

expression of the differentiated muscle marker myosin heavy chain (MHC), very few 

multinucleate myotubes could be found compared to wild-type, and the majority of those 

which did form were abnormal in appearance (i.e. stunted, having very few nuclei, or 

excessively poor in cytoplasm, as in Figure 4b, arrow.) The majority of MHC-positive 

cells were round, mononucleate cells which had not morphologically differentiated 

(Figure 4b, arrowhead). When compared to wild-type satellite cells under the same 

conditions, 17% of nuclei in MHC-positive cells are in elongated, spindle-shaped 

myotubes, as opposed to 95% in the wild-type. When costained with the satellite cell 

marker c-met (Cornelison and Wold, 1997) which is also retained on newly fused 

myotubes «Tatsumi et ai., 1998); Cornelison and Wold, unpub. res.), 11 % of MyoD-I

satellite cell nuclei are found in c-met+MF-20+ cells, while the percentage for wild-type 

cells is 86% (Figure 5.) 

MyoD-I- satellite cells underexpress m-cadherin and fail to express MRF4 

When single satellite cells from mutant animals are analyzed for coexpression of 

c-met, m-cadherin, myf5, myogenin, and MRF4 over the first four days in culture, 

several departures from the wild-type program are evident (Figure 6; Table 1). 
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Myogenin, which is not seen in wild-type cells until 48 hours, is expressed by a small 

fraction of cells at 0 and 24 hours. This could reflect the presence of a population of 

already-activated satellite cells present prior to fiber harvest, or of de novo expression due 

to activation by harvest; however, the difference between wild-type and MyoD-null is not 

significant for this gene expression state (see Table 1). 

At 24 hours, cells begin to accumulate in the myf5-positive compartment. 30% of 

the cells, comparable to 27% in wild-type, expressed no MRFs; 61 % expressed myf5 

alone. Wild-type cells at this timepoint were expressing MyoD (20%), myf5 (14%), or 

both (39%). Additionally, rarer mutant satellite cells were expressing myogenin (3%) or 

myogenin and myf5 (6%.) At this timepoint, reduced m-cadherin expression becomes 

apparent; only about 3% of cells assayed are positive for m-cadherin, compared to 24% 

in wild-type. 

By 48 hours in culture, the expression patterns diverge from the wild-type even 

more. 21 % of mutant cells express no MRFs, compared to 11 % in wild-type. While 

wild-type satellite cells have mostly transited through the MyoD+, myf5+, and 

MyoO+myf5+ states, leaving 3%, 3%, and 14% respectively in those compartments 

while 32% occupy the MyoD+myf5+myogenin+ state and 30% express all four, most 

mutant satellite cells remain in the myf5+ only state (56%) and some have gone on to be 

myf5+myogenin+, which may be analogous to the triple-positive state in wild-type cells. 

It is also evident by this timepoint that m-cadherin expression has become uncoupled 

from MRF expression. None of the MyoD-I- satellite cells assayed expressed m-cadherin 

at this point, while in wild-type cells m-cadherin expression was present in 84% of cells 

and correlated absolutely with myogenin expression. Unlike wild-type cells, mutant 

satellite cells did not express MRF4 at this timepoint. 

After 96 hours in culture, MyoO-I- satellite cells still did not express MRF4. 30% 

(compared to 2% in wild-type) did not express any MRFs, while the remainder expressed 

either myf5 alone (47%) or myf5 and myogenin (20%); in the wild-type no cells 
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expressed myf5 alone, 28% expressed myf5 and MyoD and 20% expressed myf5, MyoD 

and myogenin. While more cells in this period are expressing m-cadherin, it is not 

universally expressed as it would be in normal cells, nor is its expression correlated with 

expression of myogenin. 

To determine whether MRF4 is never expressed in MyoD-null satellite cells in 

fiber culture or if its expression is simply delayed, mutant satellite cells were assayed at 

six and eight days after fiber harvest. Even at these late timeepoints, no MRF4 

expression was detected (data not shown). 

Given the scarce m-cadherin mRNA expression, the sugested role of m-cadherin 

in mediating myoblast fusion and subsequent differentiation (Zeschnigk et al., 1995). and 

the large number of mononucleate cells expressing MHC but not fusing into myotubes, it 

was expected that costaining for MHC and m-cadherin would show coexpression only in 

myotubes (deriving from a small population of fusion-competent, presumably m-cadherin 

expressing myoblasts). What was observed, however, was that while m-cadherin 

protein was present on only a small fraction of cells as would be predicted based on the 

RT-PCR results, very few MHC+ myotubes expressed m-cadherin protein. Instead, m

cadherin immunoreactivity was usually found at points of contact between two MHC+ 

mononucleate blast-like cells (Figure 7a) and occasionally uniformly distributed over the 

surface of multinucleate blast -like cells at a slightly lower level (Figure 7b). 

My 0 D -/ - satellite cells differ from wild-type in the expression of 

myogenic, cell-cycle, and other genes 

The expression of a number of other genes of interest was assayed for in pools of 

MyoD-null satellite cells and compared to data for wild-type cells (Table 2; for review of 

satellite cell gene expression see Chapter 3.) Genes whose expression appears to be 

down-regulated in whole or in part in the mutants include MRF4; MEF2D; Id 2,3, and 4; 

twist; and p57. MRF4 and p57 are associated with terminal differentiation in muscle and 
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the Id factors and twist are considered to be inhibitors of MyoD-initiated myogenesis. 

Genes with expanded expression compared to wild-type are myogenin, p21, and p27, 

which are detected at earlier timepoints than in wild-type cultures, and cdk2, p 19, 

PDGFa, which are reproducibly detected in mutant but never in wild-type satellite cells. 

When a pool of MyoD-null satellite cells is enriched for cells which rest in 

depressions in the host fiber and are possibly ingressing, several variations from the 

'normal' MyoD-null gene expression program were detected, including the expression of 

IGF1, GDF8, and, perhaps most interestingly, Msx-l (Hox 7.1), a gene normally only 

detected in very recently activated satellite cells (see Chapter 3). 
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Discussion 

The program of skeletal muscle regeneration can be subdivided into four essential 

and sequential events: initial activation by local damage; proliferation to form a population 

of replacement myoblasts; differentiation of those myoblasts to repair the damaged tissue; 

and finally the supposed respecifiction of a new population of progenitor myoblasts 

which will not terminally differentiate during the current regeneration response but will 

return to quiescence to provide material for future responses. Defects in any of the first 

three processes will cause an acute regeneration response to fail in part or completely; 

defects in the last process would be expected to affect the success of future regeneration 

responses. 

The first two steps, activation and proliferation, are difficult to distinguish from 

one another because proliferation requires activation, and activation is normally assessed 

by initiation of proliferation, along with later expression of myogenic regulatory factors. 

Following initial activation, however, satellite cell proliferation can be affected in vitro 

and may be regulated in vivo by stimulation with various growth factors, including 

fibroblast growth factors (FGFs), insulin-like growth factors (IGFs) (Allen and 

Boxhorn, 1989; Maley et al., 1995), and hepatocyte growth factor/scatter factor (Allen et 

al., 1995). Growth factor signals lead to biochemical alterations in proteins affecting the 

cell cycle, contributing to continued cellular proliferation or, in some cases, cell cycle 

arrest and terminal differentiation. The expression of the myogenic regulatory factors 

(MRFs) is also affected by growth factor signaling and by cell cycle status, and once 

expressed will in turn regulate growth factor, growth factor receptor, and cell cycle 

regulator expression (for review see Chapter 3, this work). The return of a subset of 

activated satellite cells to the quiescent state is suggested to happen based on xxx and 

xxx. Howver, the mechanisms which may be involved are at this time completely 

unknown, as are the genes which may specify or regulate this cell fate decision. 
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Several different mechanisms are available for MyoD to influence cellular 

myogenesis: MyoD and the other MRFs are transcriptional activators, and their binding 

to their cognate recognition site (E-box) in the promoters of many muscle-specific genes 

is essential for their expression (reviewed in (Molkentin et al., 1995)Molkentin et al., 

1995). MyoD also upregu1ates the expression of factors such as p21 (Halevy et al., 

1995; Guo et al., 1995) and to promote terminal differentiation. Expression of MyoD 

also has indirect effects via genes and gene products which, when activated by MyoD, 

promote the muscle program as a whole, as evidenced by the fact that exogenous 

expression of MyoD alone in many cell types will result in terminal myogenesis 

(reviewed in (Weintraub, 1993)Weintraub, 1993). An example of still less direct action 

of MRFs is seen in the myf5-null mouse, which has sclerotomal (bone and cartilage) 

defects, probably due to loss of a required cellular interaction with myotomal (muscle) 

cells lacking myf5 (Braun et al., 1994) 

MyoD-null satellite cells do not appear to be activated at a lower frequency or at a 

slower rate than wild-type, based on cell number, cell morphology, time of first cell 

division, and timing of myf5 upregulation. Proliferation in vitro of MyoD-null satellite 

cells is reported to be threefold less than in wild-type based on population doubling time 

and 3H-thymidine incorporation (Megeney et al., 1996); this might also be caused by 

cell-cycle arrest in a large portion of the population. Thus, it appears that MyoD plays a 

role in positive regulation of the cell cycle in activated satellite cells. 

Expression of multiple MRFs is required for myogenic differentiation; they act 

together to specify the myogenic program, and while individual MRFs appear 

dispensable in some myogenic cells, the absence of two or more is usually highly 

deleterious to myoblast specification or differentiation (Raw Is et al., 1995; Rudnicki et 

al., 1993). Since both myf5 and myogenin are present in at least some MyoD-null 

satellite cells, yet none of them upregulate MRF4, the implication is that MyoD plays an 

essential and nonredundant role in expression of MRF4 in satellite cells. The absence of 
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MRF4 expression may be directly due to the absence of MyoD as a transcriptional 

activator or indirectly due to failure of as aspect of MyoD-induced satellite myogenesis 

which occurs before MRF4 upregulation. In favor of the direct effect, at least in non

myotomal myoblasts, are the data that embryonic limb myoblasts and wild-type satellite 

cells express MyoD prior to MRF4 (Ott et al., 1991; Cornelison and Wold, 1997) and 

MyoD is also capable of inducing MRF4 (as well as the other MRFs) when transfected 

into permissive cells in culture (reviewed in Weintraub, 1993). Arguing against a unique 

requirement for MyoD in regulating MRF4 expression is the observation that during 

embryogenesis MyoD-null mice will express MRF4 normally, due to complementation 

by myf5 (Rudnicki et al., 1992). It is important to note, however, that promoter

transactivator interactions required for expression in embryonic myogenic precursor cells 

may not be sufficient or even necessary in satellite cells (i.e., embryonic MPCs require 

Pax-3 to activate c-met expression, while satellite cells constitutively express c-met but 

never express Pax-3 (Bladt et al., 1995; Epstein et al., 1996). 

Terminal differentiation occurs after MRF expression is established and for most 

myogenic populations includes fusion of myoblasts into myotubes. M-cadherin is a 

homotypic cell-cell adhesion molecule that may be required for this process: when m

cadherin activity is masked by blocking peptides or antisense RNA, C2C 12 cells fail to 

fuse; they also fail to withdraw from the cell cycle or terminally differentiate (Zeschnigk 

et at., 1995). Therefore, the extreme reduction in m-cadherin expression accompanying 

the fusion- and differentiation-defective phenotype of MyoD-null satellite cells may be 

causal. It is unlikely that MyoD is required for m-cadherin expression only as a 

transactivator. While there have been no detailed studies of the m-cadherin 

promoter/enhancer region, in both the embryo and wild-type satellite cells m-cadherin can 

be expressed proir to MyoD expression (Moore and Walsh, 1993; Rose et aI., 1994; 

Cornelison and Wold, 1997) and it is expressed, albeit at extremely low frequency, in 

satellite cells lacking MyoD (this work). It is interesting and possibly relevant that 
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targeted deletion of MRF4 in the mouse (which partially reduces myf5 activity as well) 

also causes a 75% reduction in m-cadherin mRNA expression in developing myotomes 

(Patapoutian et aI., 1995). 

MyoD-null satellite cells which do express m-cadherin protein in culture have an 

abnormal pattern of expression: while in wild-type cells immunoreactivity is generalized 

over the entire cell surface, in mutant cells it is usually expressed asymmetrically in a 

stripe between two unfused mono nucleate MHC+ cells (Figure 7a) and at lower levels on 

the entire surface of mutliniucleate MHC+ blast-like cells (Figure 7b). These expression 

patterns suggest that even cells capable of expressing m-cadherin are not necessarily 

competent to fuse (possibly fusion must take place between two of the rare m-cadherin+ 

cells) and that failure to express m-cadherin must be only partially responsible for the 

fusion-deficient phenotype. 

Another possible factor in the MyoD-null satellite cell phenotype may be not in the 

satellite cells themselves, but in their environment. Conceivably, as deletion of myf5 

causes malformation of the ribs, deletion of MyoD may have an effect on muscle

associated nonmuscle tissue. During dissection of MyoD-null muscles for fiber culture, 

it was noticed that while the muscle fibers themselves are not fragile, they are not as 

strongly associated with each other as wild-type muscles, leading to fraying of muscle 

groups (DDWC). It was also noted hat, unlike wild-type cells which have an extremely 

strong affinity for the surface of dead myofibers in culture, MyoD-null satellite cells do 

not colonize dead fibers (DDWC). This may indicate a connective-tissue defect, which 

could conceivably also affect satellite cell differentiation. Results presented here which 

suggest that MyoD-null satellite cells are also differentiation-defective in vitro, which 

would tend to discount this possibility; however under other culture conditions MyoD

null satellite cells are reported to differentiate normally in vitro (Megeney et at., 1996), 

implying that availability of secreted factors available to MyoD-null satellite cells may 

modulate their phenotype. 
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Other genes which relate to myogenesis also display more limited expression in 

MyoD-null satellite cells than in wild-type. MEF2D and Ids 2, 3, and 4 are detected later 

in the timecourse than in wild-type satellite cells, while m-twist and p57 are never 

detected in mutant satellite cells. These may all be results of a delayed or incomplete 

myogenic program, particularly in the case of p57, which is normally associated with 

terminal differentiation in muscle cells (Yan et al., 1997). Conversely, p21and p27, 

which are detected at earlier timepoints than in wild-type satellite cells, are often 

correlated with cells undergoing the switch from proliferation to differentiation 

(Zabludoff et ai., 1998; Cohen et ai., 1997). 

It is more difficult to speculate as to the cause and function for expression of 

genes which, although never detectably expressed in wild-type satellite cells, are widely 

and reproducibly detected in MyoD-null satellite cells: cdk2, p 19, and PDGF-A. cdk2 is 

a cyclin-dependent kinase (reviewed in Chapter 3) whose absence in wild-type satellite 

cells is unusual; in most cells it associates with cyclin E to promote transition from G 1 to 

S phase of the cell cycle (reviewed in (Sherr, 1993). P 19 is an inhibitor of the cyclin

dependent kinases cdk4 and cdk6 (Harai et aI., 1995), but unlike many other CDIs its 

specific functions in cell cycle regulation have not been well characterized. PDGF 

(platelet-derived growth factor) A is one of two PDGF chains which form the active 

dimeric factor; unlike PDGF-BB it is not considered to have a potent effect on myogenic 

cells due presumably to lower levels of PDGFa receptor (Yablonka-Reuveni et ai., 

1990). The mechanisms leading to expression of these genes in MyoD-null but not wild

type satellite cells, and their predicted function for the MyoD-deficient muscle 

regeneration program, are unknown at this point. 

Observation of MyoD-null satellite cells in fiber culture apparently ingressing 

beneath the lamina of their host myofibers, as was suggested based on the MyoD-null 

regeneration phenotype in vivo (Megeney et af., 1996), prompted attempts to harvest 

these cells explicitly and query them for differences from either the wild-type or non-
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ingressing MyoD-null patterns of gene expressIon. The most striking difference 

observed (Table 2) was the expression of MSX-l in these pools. Among myogenic 

cells, Msx-l (Hox 7.1) is expressed by migratory, predifferentiated, MRF-negative 

embryonic limb myoblasts (Wang and Sassoon, 1995) and also by quiescent or very 

freshly-activated satellite cells (Chapter 3, this work). Re-expression of Msx-l in 

ingressing cells reinforces the idea that they may be returning to quiescence; if such 

expression is found to be characteristic of cells which will form the reserve satellite 

population in vivo it would be extremely important, both clinically and biochemically. 

The data presented here suggest a necessary and nonredundant role for MyoD in 

progression of activated satellite cells through a myogenic regeneration response. This is 

in contrast to embryonic myogenesis, in which MyoD can be functionally replaced by 

myfS, and suggests a modification of the model for satellite cell myogenesis presented in 

our earlier work (Cornelison and Wold, 1997). The new model (Figure 8) incorporates 

this new data and suggests a pathway for cells failing myogenesis to downregulate 

myogenin and myfS once again and return to the original state. 
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Figure 1: Histograms comparing myonuclei per mm of fiber (A), satellite nuclei per mm 

of fiber (B), and satellite nuclei per 100 myonuclei (C) in fiber explants from wild-type 

and three individual MyoD-null mice. 
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Figure 2: Wild-type (a, c, e) and MyoD-null (b, d, f) satellite cells on myofibers at 24, 

48, and 96 hours in culture. Arrowheads in a and b point to small satellite cells. Note 

the abnormal clustering of mutant cells at 48 hours and formation of large multicellular 

calluses at 96 hours in culture. Arrowheads in g and h point to a MyoD-null satellite cell 

at 96 hours which has begun to ingress beneath the basal lamina of the host fiber, before 

(g) and after (h) harvest by patch-clamp. 
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Figure 3: (a) Comparison of myonucleus morphology between wild-type and MyoD-null 

myofibers. (b) MyoD-null myofiber with a fork. MyoD-null fibers which forked and 

rejoined, and fibers with small sprouts, were also observed. 
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Figure 4: Immunostain for myosin heavy chain (MHC) on colonies of adherent satellite 

cells cultured for 7 days in growth medium and 7 days in differentiation medium. In 

wild-type, the majority of MHC+ cells are multinucleate myotubes (a); in cultures of 

MyoD-null cells the majority of MHC+ cells are round, mono nucleate blasts 

(arrowhead), while those myotubes which do form are abnormally stunted and have few 

myonuclei (arrow) 
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Figure 5: Column stack histogram comparing the percentage of c-met expressing cells 

which coexpress MHC (hatched area), or coexpress MHC and have a myotube 

morphology (shaded area) in wild-type and MyoD-null satellite cell cultures. 
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Figure 6: Representation of the combinatorial expression states of c-met, m-cadherin, 

MyoD, myfS, myogenin, and MRF4 in MyoD-null satellite cells during the first 4 days in 

fiber culture. Note precocious myogenin expression at 0 and 24 hours, absence of 

MRF4 expression at 48 and 96 hours, and the general decrease and failure to correlate 

with myogenin of m-cadherin. 
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Figure 7: Coexpression of myosin heavy chain (green) and m-cadherin (red) in adherent 

MyoD-null satellite cells. M-cadherin is most often observed at the interface of two 

mononucleate MHC+ cells which are in contact with each other but clearly not fused (a). 

Occasionally expression more similar to that of wild-type cells is seen, in which m

cadherin is more uniformly distributed (b); the yellow color in the m-cadherin panel is an 

artifact of the TRITC filter set used and indiciates more intense fluorescence than does the 

red color. 
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Figure 8: Revised model of MRF progression in wild-type and MyoD-null satellite cells 

encompassing the data from this work. Dashed lines indicate pathways which are 

suggested by the expression pattern but for which no direct evidence has been found. 
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Table 1: Percent occupation of all possible coexpression states in single satellite cells 

from wild-type or MyoD-null fiber cultures (percentages are derived from single-cell data 

from (Cornelison and Wold, 1997), figure 7, and this work, figure 5). Percentages 

which represent statistically significant differences are in bold type. 
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Table 2: Genes whose expression is altered from wild-type to MyoD-null; the final 

colums (96*) represents expression observed in MyoD-null satellite cell pools enriched 

for cells which are apparently ingressing beneath the fiber lamina. 
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Table 2: Genes whose expression varies between wild-type 
and MyoD-null satellite cells 

Wild-type MyoD-I-

fi 24 48 96 fi 24 48 96 96* 
MyoD + + + 
myogellln - + + + + + + 
MRF4 + + 
MEF2D + + + + + + + 
MEF2D-MS - + + + + 
twist + + 
cdk2 + + + 
pI9 + + + + + 
p21 + + + + 
p27 + + + + + + + 
p57 + + 
IGF-2 + 
PDGFa + + + + 
Msx-I + + + 
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Chapter 5 

Conclusions & future directions 
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The work presented in this thesis addresses many of the general questions 

regarding the nature and function of satellite cells as adult myoblasts presented in Chapter 

1. The results clearly indicate that while satellite cells may resemble myoblasts of the 

embryo in some aspects, they differ in both their gene expression and gene usage, 

leading to alternate pathways for some common functions and at least partially explaining 

the mechanisms of some functions unique to satellite cells. 

In the embryo, cells become committed myoblasts and proceed to differentiate in a 

continuous and fairly rapid process. In contrast, satellite cells are presumably committed 

to the myogenic lineage but do not differentiate until long after embryogenesis, and then 

only when the host muscle tissue is damaged. While it remains unknown how either 

embryonic myoblasts or satellite cells become committed to the myogenic lineage, work 

presented here presents a mechanism by which committed but quiescent satellite cells 

become activated to differentiate. The hepatocyte growth factor/scatter factor receptor c

met, which is demonstrated in Chapter 2 to be expressed by quiescent satellite cells in 

vivo, is an excellent candidate for the transducer of the initial activation signal. This 

argument is supported by the biochemical similarity of the c-met ligand to the major active 

component in crushed muscle extract (Bischoff, 1986) and the ability of exogenous 

HOF/SF to induce activation in rat satellite cells in vitro (Allen et aI., 1995) and in vivo 

(Tatsumi et al., 1998). Additional functions of c-met in satellite cells, such as inducing 

cell migration (Bischoff, 1997), may also be important for robust regeneration. 

During embryonic myogenesis, the myogenic regulatory factors (MRFs) play 

partially redundant roles in myogenic determination and differentiation. In particular, 

MyoD and myf5 share a function in determination of somitic myoblasts: deletion of either 

gene from the germline does not result in a myogenic defect due to compensation by cells 

expressing the other factor (Rudnicki et al., 1992), but deletion of both leads to the 

absence of myoblasts (Rudnicki et at., 1993). MRF expression is crucial for all known 

skeletal myogenesis, and satellite cells were known to express MRFs during 
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differentiation, so it was extremely likely that MRF activity also played a pivotal role in 

satellite cell myogenesis. However, when this work was begun the roles of specific 

MRFs in satellite myogenesis had yet to be defined; since adult muscles and potentially 

their satellite cells are heterogeneous (i.e. derived from axial vs. appendicular myoblasts, 

or expressing fast vs. slow myosin heavy chain isoforms) there also existed the 

possibility of differential gene expression within the satellite cell population. Possibilities 

for MRF activity in satellite cells included a mechanism similar to that of embryonic 

myoblasts, in which either MyoD or myf5 is directly required for initiation of myogenesis 

in different populations of satellite cells; one in which expression of either MyoD or myf5 

was sufficient for any satellite cell; one in which either MyoD or myf5 was required for 

all satellite cells; or a completely different mechanism requiring, for example, myogenin 

expression. 

In Chapter 2, it was determined that primary satellite cell in culture first expressed 

either MyoD or myf5, followed shortly by coexpression of both. This differed from the 

temporal coexpression seen in either embryonic myoblast population, and indicated that at 

least a mechanism for initiation of myogenesis in satellite cells which involved neither 

MyoD nor myf5 was unlikely. In Chapter 4, building on in vivo morphological studies 

published while this work was in progress (Megeney et ai., 1996), it was determined that 

MyoD is specifically required for robust myogenesis in satellite cells. That satellite cells 

unable to express MyoD also failed to express MRF4 at later points in the response and 

that very few MyoD-null satellite cells ever expressed m-cadherin are probably 

symptomatic of the failure of myogenic progression in these cells as well as being 

themselves causes of certain aspects of the differentiation-defective phenotype. 

The broader examination of genes whose activity may affect processes such as 

proliferation and differentiation, and the balance between them, presented in Chapter 3 

was meant to suggest sets of genes for later coexpression analysis in single cells. Many 

of these genes and gene families were chosen for study because they are known to 
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influence myogenic development in the embryo. It is important to realize, however, that 

the extracellular environments in which satellite cells exist before and after muscle 

damage are different from each other as well as from the somitic system; therefore, it is 

unlikely that all genes known to affect embryonic myogenesis will be expressed by 

satellite cells, or that genes which are expressed will necessarily serve the same function. 

Within gene families, it was hoped that a preferred suite of genes would be 

expressed in satellite cells, thus reducing the complexity of the system. While within 

some families most or all members were found expressed in satellite cells (i.e. the MRFs, 

MEFs and Ids), in other families (i.e. Notches and Dlls) there were some family 

members which were never detected in satellite cells. Given the results presented in 

Chapter 3, several sets of genes whose coexpression patterns in single cells would be of 

interest suggest themselves; following are a few possible sets. 

Since the MEF2 family of transcription factors are thought to act synergistically 

with MRFs to activate muscle-specific genes, determining the fractional representation of 

MEF2A, C, and D and any possible coexpression preferences with MRFs and correlation 

to the differentiated state may suggest specific roles for each factor in satellite 

myogenesis. Fractional representation and coexpression with MRFs should also be 

determined for Ids 1-4; if there appears to be an ordered progression of MEFs and Ids 

during the course of differentiation, it may also be possible to correlate sets of MRFs, 

MEFs, and Ids in order to form a more complete picture of the myogenesis-promoting 

and -inhibiting factors at work within a single satellite cell. 

Similarly, the coexpression of genes in the Notch cell-cell signaling pathway 

(including Notches 1 and 2, Dll-l, Jagged-2 and possibly Jagged-I) with the MRFs is 

also of interest, especially in adjacent satellite cells after 48 hours, which are likely to be 

siblings. It may be possible to determine specific roles for these signaling molecules in 

promoting or inhibiting the differentiated state. Their coexpression with Radical and 
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Lunatic Fringe and numb and numblike, especially if these genes are indeed differentially 

expressed based on a given cell's terminal differentiation status, is also of interest. 

The pathology of MyoD-null satellite cells in culture offers several opportunities 

for studying processes which do not occur in wild-type cells in vitro, such as a potential 

to return to a state similar to quiescence. The analysis of genes specifically expressed in 

apparently regressing cells may yield clues as to the mechanism of return to quiescence. 

The first such differentially-expressed gene, Msx-l, is expressed in quiescent satellite 

cells in both wild-type and MyoD-null mice, thus allowing protein and RNA reagents to 

be characterized in sections of intact muscle before being applied to sections of damaged 

muscle or to cultured fibers in order to confirm and extend the pool RT-PCR data. 

In conclusion, this work presents significant technical advances in the study of 

satellite cells, significant new data based on these techniques, and suggests new lines of 

questioning which have the potential to further extend knowledge of this system. 
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