52 research outputs found

    Hyaluronan-Phosphatidylethanolamine Polymers Form Pericellular Coats on Keratinocytes and Promote Basal Keratinocyte Proliferation

    Get PDF
    Aged keratinocytes have diminished proliferative capacity and hyaluronan (HA) cell coats, which are losses that contribute to atrophic skin characterized by reduced barrier and repair functions. We formulated HA-phospholipid (phosphatidylethanolamine, HA-PE) polymers that form pericellular coats around cultured dermal fibroblasts independently of CD44 or RHAMM display. We investigated the ability of these HA-PE polymers to penetrate into aged mouse skin and restore epidermal function in vivo. Topically applied Alexa647-HA-PE penetrated into the epidermis and dermis, where it associated with both keratinocytes and fibroblasts. In contrast, Alexa647-HA was largely retained in the outer cornified layer of the epidermis and quantification of fluorescence confirmed that significantly more Alexa647-HA-PE penetrated into and was retained within the epidermis than Alexa647-HA. Multiple topical applications of HA-PE to shaved mouse skin significantly stimulated basal keratinocyte proliferation and epidermal thickness compared to HA or vehicle cream alone. HA-PE had no detectable effect on keratinocyte differentiation and did not promote local or systemic inflammation. These effects of HA-PE polymers are similar to those reported for endogenous epidermal HA in youthful skin and show that topical application of HA-PE polymers can restore some of the impaired functions of aged epidermis

    Hyaluronan-Phosphatidylethanolamine Polymers Form Pericellular Coats on Keratinocytes and Promote Basal Keratinocyte Proliferation

    Get PDF
    Aged keratinocytes have diminished proliferative capacity and hyaluronan (HA) cell coats, which are losses that contribute to atrophic skin characterized by reduced barrier and repair functions. We formulated HA-phospholipid (phosphatidylethanolamine, HA-PE) polymers that form pericellular coats around cultured dermal fibroblasts independently of CD44 or RHAMM display. We investigated the ability of these HA-PE polymers to penetrate into aged mouse skin and restore epidermal function in vivo. Topically applied Alexa647-HA-PE penetrated into the epidermis and dermis, where it associated with both keratinocytes and fibroblasts. In contrast, Alexa647-HA was largely retained in the outer cornified layer of the epidermis and quantification of fluorescence confirmed that significantly more Alexa647-HA-PE penetrated into and was retained within the epidermis than Alexa647-HA. Multiple topical applications of HA-PE to shaved mouse skin significantly stimulated basal keratinocyte proliferation and epidermal thickness compared to HA or vehicle cream alone. HA-PE had no detectable effect on keratinocyte differentiation and did not promote local or systemic inflammation. These effects of HA-PE polymers are similar to those reported for endogenous epidermal HA in youthful skin and show that topical application of HA-PE polymers can restore some of the impaired functions of aged epidermis

    Rhamm-/- mice are defective in skin wound repair due to aberrantERK1,2 signaling in fibroblast migration

    Get PDF
    Rhamm (receptor for hyaluronan-mediated motility) is an hyaluronan binding protein with limited expression in normal tissues and high expression in advanced cancers. To understand its physiological functions and identify the molecular mechanisms underlying these functions, we created mice with a genetic deletion of Rhamm. We show that Rhamm(−/−) fibroblasts fail to resurface scratch wounds >3 mm or invade hyaluronan-supplemented collagen gels in culture. We identify a requirement for Rhamm in the localization of CD44 to the cell surface, formation of CD44–ERK1,2 (extracellular-regulated kinase 1,2) complexes, and activation/subcellular targeting of ERK1,2 to the cell nucleus. We also show that cell surface Rhamm, restricted to the extracellular compartment by linking recombinant protein to beads, and expression of mutant active mitogen-activated kinase kinase 1 (Mek1) are sufficient to rescue aberrant signaling through CD44–ERK1,2 complexes in Rh(−/−) fibroblasts. ERK1,2 activation and fibroblast migration/differentiation is also defective during repair of Rh(−/−) excisional skin wounds and results in aberrant granulation tissue in vivo. These results identify Rhamm as an essential regulator of CD44–ERK1,2 fibroblast motogenic signaling required for wound repair

    Hyaluronan Functions in Wound Repair That Are Captured to Fuel Breast Cancer Progression

    No full text
    Signaling from an actively remodeling extracellular matrix (ECM) has emerged as a critical factor in regulating both the repair of tissue injuries and the progression of diseases such as metastatic cancer. Hyaluronan (HA) is a major component of the ECM that normally functions in tissue injury to sequentially promote then suppress inflammation and fibrosis, a duality in which is featured, and regulated in, wound repair. These essential response-to-injury functions of HA in the microenvironment are hijacked by tumor cells for invasion and avoidance of immune detection. In this review, we first discuss the numerous size-dependent functions of HA and emphasize the multifunctional nature of two of its receptors (CD44 and RHAMM) in regulating the signaling duality of HA in excisional wound healing. This is followed by a discussion of how HA metabolism is de-regulated in malignant progression and how targeting HA might be used to better manage breast cancer progression

    Specific sizes of hyaluronan oligosaccharides stimulate fibroblast migration and excisional wound repair.

    Get PDF
    The extracellular matrix polysaccharide hyaluronan (HA) plays a key role in both fibrotic and regenerative tissue repair. Accumulation of high molecular weight HA is typical of regenerative repair, which is associated with minimal inflammation and fibrosis, while fragmentation of HA is typical of postnatal wounds, which heal in the presence of inflammation and transient fibrosis. It is generally considered that HA oligosaccharides and fragments of a wide size range support these processes of adult, fibrotic wound repair yet the consequences of sized HA fragments/oligosaccharides to each repair stage is not well characterized. Here, we compared the effects of native HA, HA oligosaccharide mixtures and individual sizes (4-10 mer oligosaccharides, 5 and, 40 kDa) of HA oligosaccharides and fragments, on fibroblast migration in scratch wound assays and on excisional skin wound repair in vivo. We confirm that 4-10 mer mixtures significantly stimulated scratch wound repair and further report that only the 6 and 8 mer oligosaccharides in this mixture are responsible for this effect. The HA 6 mer promoted wound closure, accumulation of wound M1 and M2 macrophages and the M2 cytokine TGFβ1, but did not increase myofibroblast differentiation. The effect of 6 mer HA on wound closure required both RHAMM and CD44 expression. In contrast, The 40 kDa HA fragment inhibited wound closure, increased the number of wound macrophages but had no effect on TGFβ1 accumulation or subsequent fibrosis. These results show that specific sizes of HA polymer have unique effects on postnatal wound repair. The ability of 6 mer HA to promote wound closure and inflammation resolution without increased myofibroblast differentiation suggests that this HA oligosaccharide could be useful for treatment of delayed or inefficient wound repair where minimal fibrosis is advantageous

    6mer HA fragments accelerate repair of full thickness excisional wounds.

    No full text
    <p>Full thickness excisional wounds were treated with a mixture of Collagen I and either 6mer, 8mer or 10mer 40(1–50 µg/ml) or PBS as described in Material and Methods. A: Wound edges were traced and remaining wound area quantified by image analysis. Graph shows remaining wound area relative to original wound size on day 7 after wounding. Mean±SE of N = 6 wounds. B: Wound closure is completed 2 weeks after wounding. Representative images of 2 weeks old wounds that were stained with Masson’s Trichrome are shown.</p

    6mer and 40 kDa HA moderately increase macrophage infiltration during wound repair.

    No full text
    <p>A: Cross sections of 7 days old wounds were stained with INOS specific antibodies as described in Materials and Methods. Positive cells were counted/area granulation tissue. Graph shows Mean±SE of N = 18 (6 sections, three areas/section). B: Cross sections of 7 days old wounds were stained with ARG1 specific antibodies as described in Materials and Methods. Positive cells were counted/area granulation tissue. Graph shows Mean±SE of N = 18 (6 sections, three areas/section).</p

    6mer HA significantly increases TGFβ1 accumulation but has no effect on collagen accumulation during wound repair.

    No full text
    <p>A, B: Cross sections of 7 days old wounds were stained with TGFβ1 specific antibodies as described in Materials and Methods. Positive stained area was quantified by image analysis using ImageJ. Graph shows Mean±SE of N = 18 (6 sections, three areas/section). C: Cross sections of 7 days old wounds were stained with Masson’s Trichrome as described in Materials and Methods. Blue staining (Collagen) was quantified by image analysis using ImageJ. Graph shows Mean±SE of N = 18 (6 sections, three areas/section).</p

    Uropathogenic Escherichia coli

    No full text
    • …
    corecore