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1. Introduction 

1.1 The breast microenvironment 

The breast is an organ composed predominantly of glandular, fatty, and fibrous tissues. 

Glandular tissue is composed of ducts lined by luminal epithelial cells that secrete milk, 

and is surrounded by a layer of myoepithelial cells that contract to release milk. 

Myoepithelial cells produce proteases, growth factors and growth factor receptors that 

contribute to remodelling during breast tissue expansion. Each duct is enclosed by a 

laminin-rich basement membrane and embedded in extracellular matrix (ECM). 

Mammary gland ECM and is a mixture of fibrillar proteins such as collagens, laminins, 

fibronectin, and polysaccharides such as heparin sulphate, chondroitin sulphate and 

hyaluronan (HA). These collectively provide the mechanical and structural support 

required for maintaining mammary tissue architecture and for storage of the soluble 

regulatory molecules needed for tissue homeostasis, plasticity, and remodelling. ECM 

promotes both the differentiated, homeostatic integrity of mammary tissue and is also a 

key determinant in branching morphogenesis, response-to-injury and pathological 

processes such as neoplastic disease. The importance of the ECM in determining 

homeostatic vs. tumourigenic events was originally demonstrated three decades ago by 

Beatrice Mintz, who showed that marked embryonic carcinoma cells injected into 

blastocysts do not give rise to tumours but instead contribute to normal tissue 

architecture. The same cells injected into adult mice develop into tumours (Mintz and 

Illmensee, 1975). Components of the microenvironment that support tumour progression 

have since been identified. For example, chick embryos infected with Rous Sarcoma virus 

express the oncogene v-src in every cell but tumours develop only at sites of wounding 

due to the accumulation of TGF-┚1 (Weigelt and Bissell, 2008). 
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Fig. 1. Breast tumour microenvironment  

Conversely, breast tumour cells can be reverted by blocking signalling through ECM 
receptors, including integrins (Turley et al., 2008) and HA receptors such as RHAMM (Hall 
et al., 1995). These and other studies have revealed a key role of ECM in initiating and 
sustaining breast cancer and introduced the novel concept that transformation can be a 
plastic rather than irreversible process. Specifically, increased HA accumulation in tumour 
cells or stroma is associated with poor outcome in Breast Cancer (BCA) (Tammi et al., 2008). 
These studies predict that HA is an important component of ECM that determines a 
homeostatic vs. tumourigenesis “switch”.  

2. HA biology 

2.1 Biochemical properties 

HA belongs to the glycosaminoglycan group of polysaccharides composed of disaccharide 
units of a hexose linked to a hexosamine. It consists of repeating units of N-acetyl 

glucosamine and -glucuronic acid (Fig. 2). The native polymer consists of up to 106 to 107 
non-branching disaccharide units. The functions of HA within the ECM and cells depend 
upon its molecular weight, the type of cell, and the HA receptor(s) that target cells express. 
High molecular weight HA (e.g. >200 kDa) is a major biomechanical factor in ECM, which 
contributes to tissue hydration and elasticity by providing a template for the assembly of 
macromolecular complexes. A well known example is the “bottle brush” complex of 
aggrecan and link proteins, which provides the visco-elastic nature of synovial fluid. HA 
fragments provide signalling functions and are usually present during the ECM remodelling 
that is associated with morphogenesis or disease. Regulated synthesis and degradation are 
key factors in maintaining a delicate balance between structural (homeostatic) and signalling 
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(wound and disease) functions of HA (Itano et al., 2008, Jiang et al., 2007, Veiseh and Turley, 
2011). BCA cells are particularly adept at producing and responding to HA fragments. BCA 
cells produce increased levels of HA by increasing HA synthase expression, rapidly 
fragmenting HA as a result of increased Reactive Oxygen Species (ROS) production, and 
increasing hyaluronidase expression and release, and increasing expression and display of 
HA receptors to elevate the response to these fragments (Simpson and Lokeshwar, 2008, 
Toole and Slomiany, 2008, Veiseh and Turley, 2011). 
 

 

Fig. 2. HA structure and molecular weight ranges. 

2.2 HA synthesis and tumourigenesis 

HA is synthesized by three HAS isoforms, HAS1-3, which are located on different 
chromosomes but share from 57 to 80% sequence homology (Weigel et al., 1997, Lokeshwar 
and Selzer, 2008, Stern, 2008). The mature enzymes are multi-pass integral proteins, which 
are primarily located in the plasma membrane and catalyze polymerization of HA from the 
uridine diphosphate (UDP) sugars uridine diphosphate glucuronic acid (UDP-Glc-UA) and 
uridine diphosphate N-acetylglucosamine (UDP-GlcNAC). Synthesis and secretion of HA 
occur concurrently, allowing for the rapid production and release of large polymers into the 
ECM (Weigel et al., 1997). There is some evidence that HASs are resident in endosomes, ER 
and the perinuclear membrane although whether or not these produce intracellular HA is 
not yet clear (Karousou et al., 2010, Vigetti et al., 2010). HAS1 and 2 are widely expressed 
throughout the embryo while HAS3 expression is more restricted, for example, to 
developing tooth-forming neural crest cells and hair follicles. Genetic deletion of HAS2 is 
embryonic lethal in mice due to severe defects in cardiac tissue development, whereas 
targeted disruption of the HAS1 or 3 alleles results in fertile viable animals with only minor 
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aberrations in tooth and follicle development (Weigel and DeAngelis, 2007). It is not fully 
understood why only HAS2 is absolutely required for organogenesis, but it has been 
suggested that it produces high molecular weight tissue HA while the other HASs produce 
the smaller HA sizes (Itano et al., 1999). There are differences in the mechanisms by which 
HAS isoform expression and enzyme activity are regulated that may be relevant to their 
functions and essential or non-essential roles in organogenesis (Tammi et al., 2008).  
BCA cells use several mechanisms to rapidly control the synthesis and release of HA, 

thereby modifying their ECM, including substrate availability, gene expression, 

posttranslational control of enzyme activity, and differential response to cytokines and ECM 

signalling. The availability of UDP sugars can profoundly influence the yield of HAS 

enzymes (Kakizaki et al., 2004). This has been demonstrated by the use of 4-

Methylumbelliferone (4-MU), which depletes intracellular levels of UDP-Glc-UA (Kakizaki 

et al., 2004) by serving as a glucuronidation substrate.  It blocks HA production and reduces 

BCA tumourigenicty.  

The genomic plasticity and instability of cancer cells often leads to chromosomal 

aberrations that can result in both de-regulation of gene expression and allele duplication.  

Chromatin breakpoint analysis using a BCA line revealed significant chromosomal 

rearrangements close to the HAS2 gene. These result in de-regulation of HAS2 expression 

and significantly higher HAS2 mRNA levels in transformed cells compared to normal 

breast cells (Unger et al., 2009). Detailed in vitro and in vivo studies of BCA lines and 

xenografts have provided numerous insights into the effects of genetically modifying 

HAS expression levels on HA concentration within the tumour and peri-tumoural stroma. 

Antisense inhibition of HAS2 in MDA-MB-231 BCA cells delays proliferation via a 

transient arrest of the cell cycle (Udabage et al., 2005). Knockdown of HAS expression also 

results in significant alterations in genes associated with HA metabolism. CD44 and 

HYAL1 expression are both down-regulated in response to antisense inhibition of HAS2. 

In vivo, MDA-MB-231 cells expressing antisense HAS2 do not form tumours in nude mice 

after 12 weeks, whereas the parental cell line readily establishes both primary and 

secondary tumours during this time. This clearly implicates tumour cell HA as a 

significant driver of BCA formation. Elevated HA accumulation within BCA peri-

tumoural stroma is also a prognostic factor and appears to promote a microenvironment 

suitable for BCA growth.  For example, HAS2-/- fibroblasts transplanted with BCA cells 

into the fat pads of NOD/SCID mice fail to recruit macrophages and promote 

angiogenesis to the same extent as HAS2+/+ fibroblasts. This defect results in decreased 

tumour volume (Kobayashi et al., 2010). 

The expression of all three HASs is controlled by growth factors and cytokines. However, 
there appear to be subtle differences in the response of each isoform that depend upon the 
cell type. For example, PDGF and TGF┚ induce HAS2 expression in fibroblasts but HAS1 or 
3 expression in synoviocytes and keratinocytes, respectively (Karousou et al., 2010). H-Ras 
transformation increases only HAS2 expression in 3Y-1 tumour cells, while transformation 
with v-src or v-fos increases both HAS1 and HAS2 expression in the same cells (Itano et al., 
2004). Posttranslational modification of HAS, including phosphorylation by PKC, PKA, and 
the ERK/ErbB2 MAPK pathways (Goentzel et al., 2006, Itano and Kimata, 2008) as well as 
mono-ubiquitination (Karousou et al., 2010) also affects HAS activity. HAS3 serine 
phosphorylation is enhanced upon treatment with a PKC activator (Goentzel et al., 2006). All 
three HAS isoforms expressed by SKOV3 ovarian cancer cell line are phosphorylated by 
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ERK1,2 in response to treatment with Heregulin (Bourguignon et al., 2007) and mono-
ubquitination of K190 on HAS2 rapidly inactivates this enzyme (Karousou et al., 2010).   

2.3 HA fragmentation and its role in tumourigenesis 

In addition to HAS1-3 expression, the amount and polymer size of HA are also affected by 
reactive oxygen species (ROS) and secreted hyaluronidases (HYALs), which fragment HA to 
various sizes. Significant levels of ROS can be generated during times of oxidative stress and 
these are considered critical in cancer initiation, promotion and progression (Karihtala et al., 
2007). ROS are produced in response to extracellular stimuli such as bacterial infections and 
environmental toxins, but can also be produced by cellular metabolism (Yu et al., 2011). Five 
HYALs fragment HA: HYAL-1-3, PH-20 and HYAL-5. The HYALs differ in their cellular 
location and enzymatic properties. HYAL-1 and 2 are the major HYALs produced by 
somatic tissues whereas HYAL-3 is expressed mostly in bone marrow and testes. Both PH-
20 and HYAL-5 expression are normally restricted to testes but PH20 is aberrantly expressed 
in BCA (Stern, 2008). HYAL-1 and 2 cooperate to degrade HMW HA in a coordinated 
fashion. HYAL-2, which is GPI anchored to the cell surface, degrades extracellular HA to 
fragments of 20 kDa, which are then taken up into endocytic vesicles. HYAL-1 present in the 
lysosome further degrades intracellular HA into tetrasaccharides (Tammi et al., 2001, Stern, 
2008, Simpson and Lokeshwar, 2008). Coordinated breakdown of HA by HYALs increases 
the rate of HA metabolism and this appears to be an important factor in tumourigenesis 
(Veiseh and Turley, 2011). For example, co-expression of HAS3 and HYAL-1 increases the 
aggressiveness and spread of prostate cancer cells compared to expression of either alone 
(Bharadwaj et al., 2009). In BCA, HYAL-1 and HYAL-2 are often coordinately overexpressed 
compared to non-malignant breast tissue. Knockdown of HYAL-1, which is overexpressed 
in MDA-MB-231 and MCF-7 BCA lines, reduces tumour xenograft size (Tan et al., 2010).  

3. HA receptors detect oligosaccharides and fragments: Control of key 
signalling pathways by HA fragments 

3.1 CD44 

CD44 is a class I transmembrane receptor, which binds to HA via a link domain and is 
expressed by a variety of cells, including fibroblasts, endothelial and epithelial cells, 
smooth muscle, and haematopoietic cells. A vital role of CD44 is recruiting cells, including 
immune cells and fibroblasts, to sites of inflammation through HA-mediated signalling. 
Under homeostatic conditions, CD44 is in a low HA binding state, but during injury and 
tumourigenesis its binding affinity is increased and it mediates the inflammatory and 
tissue repair responses (Thorne et al., 2004, Naor et al., 2008). CD44 is expressed as many 
different isoforms due to extensive splicing in a region proximal to the transmembrane 
domain (Thorne et al., 2004). The smallest CD44 isoform, CD44s (standard form), skips 
this variable region. The role of CD44s and variants in BCA progression is still 
controversial. For example, CD44s expression in CD44low MCF-7 human BCA cells results 
in xenograft metastasis to the liver (Ouhtit et al., 2007) while CD44-/- mice develop more 
lung metastases than wildtype animals in response to polyomavirus middle T (Lopez et 
al., 2005). Importantly, a recent study by Brown et al. (2011) demonstrated that CD44s 
expression is elevated and required for epithelial-mesenchymal transition of immortalized 
human mammary epithelial cells and for recurrence of HER2/neu induced murine 
mammary tumours (Lopez et al., 2005). HA synthesis is elevated in CD44+ BCAs 
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compared to CD44- and both CD44+ and HER2+ BCAs are amongst the most aggressive 
and invasive subtypes of BCA with poor prognosis.   Expression of variant exons, in 
particular exon v6, is associated with increased in vitro cell migration and invasion of 
human BCA cells (Herrera-Gayol and Jothy, 1999). Although CD44v6 expression has been 
correlated with multiple clinicopathological features (primary tumour size, axillary nodal 
status, histological grade and pTNM stage) it is not an independent prognostic factor (Ma 
et al., 2005). A study by Rys et al. (2003) found a correlation between the expression of 
CD44 v3 and the presence of BCA metastasis. Additionally, high CD44s expression 
correlates with increased disease free survival in node negative invasive BCA (Diaz et al., 
2005). The controversies surrounding CD44 and its role in BCA progression may be 
caused by a limited number of patient samples in some of these studies, heterogeneity of 
BCA, and CD44 expression by cancer stem cells. The latter, in particular, has raised much 
recent interest in CD44 since several groups have identified CD44 as a potential marker 
for BCA stem cells. This is a highly tumourigenic population of cancer cells that, although 
only representing a small percentage of cells in the tumour, are thought to be responsible 
for tumour recurrence, metastasis and treatment failure. Aggressive BCA and BCA 
tumour progenitor cells have enhanced CD44 expression, associated with an increase in 
HA synthesis and CD44-HA binding affinity (Heldin et al., 2008).  
In BCA cells, HA triggers CD44 interactions with a variety of signalling mediators involved 

in cell proliferation, migration and chemo-resistance. Ankyrin is a membrane-associated 

component of the cytoskeleton that is involved in regulation of cytoskeleton turnover and 

IP3 receptor-mediated regulation of intracellular Ca2+. CD44-HA interactions induce CD44-

ankyrin coupling and modify receptor-dependent Ca2+ mobilization (Bourguignon et al., 

2008). CD44 also localizes ankyrin and IP3 receptor to lipid rafts, which are cholesterol and 

caveolin rich signalling microdomains in the plasma membrane (Fig. 3). The Rho GTPases, 

RhoA, Rac and CDC42, are key regulators of cell migration and HA stimulates RhoA in BCA 

cells. RhoA activity is regulated by RhoGEF, a guanine nucleotide exchange factor that 

forms a complex with CD44 in BCA cells. One of the downstream RhoA targets, ROK, 

phosphorylates the cytoplasmic domain of CD44 thereby increasing CD44-ankyrin 

interactions. Other targets of ROK are myosin phosphatase and myosin light chain, two 

important mediators of actin-myosin dependent membrane ruffling required for cell 

migration. HA also activates the PI3 kinase/AKT pathway: Gab-1 phosphorylation by ROK 

stimulates PI3 kinase and AKT activation, leading to increased cell proliferation, invasion 

and cytokine production (Bourguignon et al., 2008). Additionally, ROK phosphorylates and 

activates NHE1, a Na+-H+ exchanger, causing intracellular and extracellular acidification 

leading to HYAL-2 driven HA degradation, ECM breakdown and tumour progression. 

CD44-HA interactions stimulate signalling through Rac1, another RhoGTPase, via the GEF 

Tiam1. In MDA-MB-231 cells, CD44-HA interactions also activate c-Src kinase  resulting in 

activation and nuclear translocation of the transcription factor Twist, miR-10b expression 

and down-regulation of the tumour suppressor gene HOXD10 (Bourguignon et al., 2010 

Toole, 2004). CD44 undergoes sequential proteolytic cleavages resulting in the release of its 

ectodomain from the cell surface and formation of a CD44 intracellular domain fragment, 

which is translocated to the nucleus, acting as a transcription co-regulator (Nagano and 

Saya, 2004). CD44 ectodomain cleavage is mediated by MT1-MMP and is stimulated by 

multiple factors, including HA fragments and TGF-┚ (Kuo et al., 2009, Sugahara et al., 2006) 

which, contribute to tumour cell migration and invasion (Fig. 3).  
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3.2 RHAMM/HMMR 

Receptor for HA Mediated Motility (RHAMM/HMMR) belongs to a group of proteins that 

are found intracellularly as well as extracellularly. RHAMM does not contain a 

transmembrane domain or classical export signal and is likely exported through an 

unconventional mechanism that does not involve the Golgi/ER. RHAMM is expressed as 

multiple isoforms and one of these, an N-terminal truncation that lacks the first 163 aa 

residues, is transforming in mesenchymal cells (Hall et al., 1995). On the cell surface, 

RHAMM interacts with HA and forms complexes with transmembrane receptors such as 

CD44, PDGFR, and RON (Maxwell et al., 2008). Interestingly, CD44 surface display is 

reduced in mesenchymal cells isolated from RHAMM-/- mice, demonstrating functional 

interplay between these two HA receptors (Tolg et al., 2006). RHAMM is elevated in most 

types of cancer in particular breast, ovarian, and prostate cancer, as well as in MM, AML 

and CML. In BCA, RHAMM is a tumour marker, novel susceptibility factor and prognostic 

factor for poor outcome (Maxwell et al., 2008). Consistent with these clinical correlations, 

RHAMM has tumourigenic properties in experimental systems that have been linked to its 

ability to bind HA. In BCA cells, RHAMM/CD44/HA complexes sustain phosphorylation 

and activation of the Ras/MAPK (ERK1,2) signalling pathway, leading to BCA progression 

and constitutively high rates of motility and invasion (Hamilton et al., 2007). The 

relationship between RHAMM and ERK1,2 activation has recently been confirmed in BCA 

samples where concomitant upregulation of phosphorylated ERK1,2 and RHAMM in 

tumour samples correlates with a high tumour grade (Ward C., in preparation).  

Intracellularly, RHAMM binds directly to tubulin and is involved in regulation of 

microtubule stability and turnover as a result of its association with ERK1,2. In 

mesenchymal cells, the absence of RHAMM increases microtubule stability resulting in 

reduced cell migration and aberrant mitotic spindle formation (Tolg et al., 2010, Groen et al., 

2004). RHAMM interacts directly with ERK1, inferring that RHAMM may act as a 

scaffolding protein that directs ERK1 to its substrates including microtubule associated 

proteins that regulate microtubule stability (Tolg et al., 2010). Interestingly, RHAMM 

expression is downregulated by p53, an important tumour suppressor gene, suggesting that 

RHAMM may be involved in p53 loss-induced tumour progression (Buganim and Rotter, 

2008, Godar and Weinberg, 2008, Sohr and Engeland, 2008). RHAMM also acts on the 

BRCA1, pathway and may play an important role in BCA tumours arising from loss or 

inactivation of BRCA1 (Joukov et al., 2006) 

3.3 TLR2 and TLR4 

Toll like receptors (TLR) are part of a cellular defence mechanism that is based on pattern 
recognition. TLRs recognize and bind bacterial lipopolysaccharides, DNA, and, in the case 
of TLR2,4, small HA fragments. In general, HA-TLR2,4 interactions control innate immunity 
through several mechanisms. For example, TLR 2,4 activation results in cytokine and 
chemokine release and leads to expression of metalloproteinases (MMPs) in immune cells 
(Voelcker et al., 2008). Versican, which is associated with poor prognosis and relapse in BCA, 
interacts with HA polymers to form cord-like structures that link TLR2 on endothelial cells 
and fibroblasts. This, in turn, causes the secretion of pro-inflammatory cytokines 
(Theocharis et al., 2010). HA-TLR2,4 interactions also stimulate NFκB signalling and activate 
TNF┙. In BCA cells, TLR 2,4 interact with CD44 and act as co-receptors to stimulate 
signalling through HA and CD44 regulated pathways which may play a role in breast 
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tumour cell migration/infiltration. The human BCA cell line MDA-MB-231 expresses 
mainly TLR4, and siRNA mediated knock-down of TLR4 significantly reduces cell survival 
and expression of the cytokines Il-6 and Il-8, suggesting that TLR4 is a promising target for 
BCA therapy (Yang et al., 2010). 
 

 

Fig. 3. HA initiates the signalling of RHAMM and CD44 regulated pathways, resulting in a 
variety of pro-tumourigenic outcomes. 

3.4 LYVE-1  

HA links the two main functions of the lymphatic system: draining of interstitial fluids and 
immune surveillance. These functions are achieved through its interaction with the receptor 
LYVE-1, present in lymphatic endothelia (Jackson, 2009). LYVE-1 is a type I integral 
membrane polypeptide that exhibits high homology with CD44 (Banerji et al., 1999) and is a 
homeostatic HA receptor required for liver and lymphatic vessel formation. Its expression 
does not change as frequently in malignancy as HA receptors involved in response to injury, 
for example CD44 and RHAMM/HMMR.  This does not rule out a role in injury and 
tumour progression however, as lymphangiogenesis is an important processes in both 
events, and elevated accumulation of HA in stroma results in lymphangiogenesis via 
signalling through LYVE-1 (Gale et al., 2007).  
To further demonstrate the association of LYVE-1 with tumour dissemination through the 
lymphatic system, (Du et al., 2010) expressed LYVE-1 in COS-7 kidney cells and performed 
cell adhesion assays with the BCA cell line HS-578T which produces HA. These two cell 
lines had enhanced adhesion over the control cells, COS-7 not expressing LYVE-1. This 
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suggests that LYVE-1 plays a role in tumour cell adhesion which is dependent on HA-
LYVE-1 interaction. Apart from its effect on tumour cell adhesion, LYVE-1 has also been 
proven to be a prognostic factor in tongue squamous cell carcinoma and decreased levels of 
LYVE-1 in the invasive front of tumours predicts cervical lymph node metastasis 
(Matsumoto et al., 2010). 

4. HA expression and signalling in different cell types and its relationship to 
BCA  

4.1 HA, inflammation, and the role of inflammatory cells in tumourigenesis 
4.1.1 Macrophages 

HA has a major role in macrophage biology during inflammation, wound repair, and 
tumourigenesis and at least part of the detrimental effects of HA accumulation during 
tumourigenesis is due to the activation of tumour associated macrophages (TAMs). For 
instance, TAMs preferentially traffic to stromal compartments formed within HA producing 
tumours (Kobayashi et al., 2010). Macrophages are classed into type 1 and 2 according to the 
adaptive immune polarization with which they associate. Type 1 macrophages are antigen-
presenting cells which promote the cytotoxic response, resulting in tumour cell killing. Type 
2 macrophages, however, are classically associated with tissue remodelling, angiogenesis, 
and scavenging/phagocytosis. TAMs are similar to type 2 polarized macrophages which 
have decreased or inhibited cytotoxic activity (Mytar et al., 2003). Kuang et al. (2007) found 
that overexpression of HAS2 was able to polarize macrophages towards a malignant TAM 
phenotype. Additionally, exposure to solid tumour cell culture supernatant elicits a pro-
inflammatory response in monocytes and their subsequent TAM-like polarization, showing 
that the tumour cells themselves are responsible for the immunosuppressive macrophage 
phenotype observed in solid tumours (Kuang et al., 2007). The importance of TAM 
recruitment in BCA dissemination was additionally illustrated by CSF-1 null mice crossed 
with the MMTV transgenic mouse model of BCA. In these mice, a failure to recruit 
macrophages into the primary tumour results in delayed primary tumour invasion and 
metastasis to the lungs compared to wildtype MMTV mice. The addition of exogenous CSF-
1 rescues macrophage recruitment and restores tumour and metastasis development to 
baseline levels (Lin et al., 2001). After injury, or during tissue inflammation, small fragments 
of HA associate with TLR4 and control macrophage cytokines and chemokines (Termeer et 
al., 2000). For example, BCA cell associated HA promotes the production of pro-
inflammatory cytokines and chemokines, such as TNF-┙ and IL-12, as well as ROS, by 
TAMs, an effect which can be alleviated by either blocking CD44 receptors on monocytes, or 
by the addition of non-BCA cell associated HA (Mytar et al., 2001). HA regulation of pro-
inflammatory cytokine production also occurs in monocytes pre-exposed to a variety of 
solid tumour cell types and culture supernatants, including the BCA line MCF-7 (Mytar et 
al., 2003, del Fresno et al., 2005), modulating the IRAK family of NFκB regulatory molecules, 
this further downregulating TNF-┙ and IL-12 production. HA-mediated CD44 cross-linking 
induces this activity and is prevented by the addition of exogenous HYAL (Mytar et al., 
2003). TAMs are recruited and regulated in response to NFκB, whose activation is often HA-
mediated through TLR4 (del Fresno et al., 2005) and NFκB overexpression results in tumour 
metastasis (Mantovani et al., 2007). Nitric oxide, which is the product of nitric oxide synthase 
2 (NOS), is stimulated by hypoxia and CSF-1, among others, and is a signalling molecule 
integrated within the NFκB inflammatory pathway. NOS2 signals the upregulation of CD44, 
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c-Myc, MMP, and VEGF, which are all involved in promoting tumourigenesis. In BCA, 
NOS2 expression within tumour cells themselves is correlated with increased tumour grade 
and angiogenesis (Ambs and Glynn, 2011). 

4.1.2 T Cells 

T cells orient their cytoskeleton and migrate towards sites of inflammation, such as those 
present in a tumour microenvironment (TME), in a PKC-dependent manner as a direct 
result of CD44 crosslinking by HA (Fanning et al., 2005). In BCA, CD8+ T cells are most 
predominant in advanced cancer stages where their presence in proliferating tumours is a 
good prognostic indicator. T cells are able to participate in either a Th1 or Th2 polarized 
immune response and, when polarized to a Th1 response, they express and secrete IFN┛, 
TGF┚, TNF┙, IL-2, resulting in cytotoxic cooperation (T cells and M1). Th2 polarized CD4+ T 
cells secrete IL-4,5,6,10,13 which leads to an increase in B cell mediated  immunity (DeNardo 
and Coussens, 2007). Because of the anti-tumour effects of T cells, the activation of cytotoxic 
T cells against HA receptors as immunotherapy in leukemias is currently undergoing 
clinical trials and will be discussed later in this chapter. On the other hand, the presence of 
CD4+ T cells correlates with disease progression and metastasis; however, it has been 
shown by different groups that CD4+ T cells are crucial for mounting an immune response 
against cancer. For example, tumour growth of EL4 lymphoma cells inoculated into mice is 
inhibited by the presence of dendritic cells primed against RHAMM protein. This 
interaction, however, is dependent on CD4+ T cells, as the effect of DC killing of the tumour 
is significantly reduced with a reduced CD4+ T cell population (Fukui et al., 2006). 
Furthermore, Rakhra et al. (2010) showed that in ALL and B-cell leukemia, CD4+ cells were 
necessary for sustained tumour regression. In mouse models, inhibition of MYC or BCR-
ABL rescues tumours from oncogene addiction; however, tumours regress in the presence of 
TSP-1 induced CD4+ T cells, and knockdown of TSP-1 impairs this ability (Rakhra et al., 
2010).  
Regulatory T cells (Treg; CD4+/CD25+/FOXP3+) play controversial roles in tumour 

progression and can have both anti- and pro-tumourigenic effects, depending on the 

chemokines or cytokines produced and the type of solid tumour. Treg cells may be activated 

in an immunosuppressive manner, preventing cytotoxic immune responses, and allowing 

the tumours to evade immune attack. For example, in CLL, a large Treg population 

dampens specific CD8+ T cell responses against tumour associated antigens (Giannopoulos 

et al., 2010). The same may be true for solid tumours. When coordinated, however, with a 

high T cell density, they may indicate good prognosis and inhibition of metastasis (Camus et 

al., 2009, Carreras et al., 2006).  

4.1.3 B Cells 

Immunoglobulin deposition by B cells in BCA stroma can be detrimental to disease 
progression and the accumulation of autoantibodies produced by B cells and deposited in 
the stroma correlates with poor prognosis (Fernandez Madrid et al., 2005). An increase in 
serum IgG correlates with an increase in TAM numbers which, in turn, promotes 
angiogenesis in mouse mammary carcinoma, a process associated with poor clinical 
outcome. A proposed mechanism for the involvement of TAMs in B cell processes is the 
phagocytosis of IgG by macrophages. IgG engages Fc┛ receptors, which stimulates VEGF 
secretion, increases angiogenesis and promotes tumour growth rate (Barbera-Guillem et al., 
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2002). The majority of stromal B cells localize to perivascular regions within tumours and 
chronic B cell activation promotes tumours by recruiting macrophages and activating an 
innate immune response. However, the role of B cells in BCA progression is complicated 
since, for example, B cells may also recruit antigen presenting cells, such as CD8+ T cells and 
dendritic cells which help to eradicate neoplasms. 

4.1.4 Dendritic cells and mast cells 
Dendritic cells (DC) can also exhibit HA dependent characteristics that either promote or inhibit 
tumourigenesis. HA or chondroitin sulphate, in conjunction with CSF-1, activate DC from an 
immature to differentiated state via an NFκB regulated process, illustrating the importance of 
HA in eliciting an immune response (Yang et al., 2002). Pedroza-Gonzalez et al (2011) recently 
showed that human BCA produces thymic stromal lymphopoietin (TSLP) which induces 
expression of OX40L on DCs, polarizing them towards a Th2 inflammatory response. In vitro this 
drives the production of IL-13 and TNF by Th2 polarized T cells (Pedroza-Gonzalez et al., 2011). 
DC also become tumour insensitive and, as a result, do not mature and differentiate into 
cytotoxic cells. Furthermore, HA fragment build ups are at least partly responsible for preventing 
DC maturation in tumour bearing animals (Kuang et al., 2008). 
In BCA, c-kit expression by mast cells, a protein which is usually only present in specific 
tissue types, such as germ cells, predicts primary tumour recurrence (Khazaie et al., 2011). 
However, an abundance of stromal mast cells in invasive BCA is associated with good 
prognosis (Rajput et al., 2008). The mast cell line HMC-1 expresses high levels of CD44s and, 
through an interaction with HA, adheres to stromal tissue (Fukui et al., 2000). Therefore, in 
both mast cells and DC, a CD44-HA interaction may result in anti-tumour responses. 

4.2 HA regulation of a pro-inflammatory environment by non-immune cells 
4.2.1 Breast cancer cells and their contribution to a pro-inflammatory environment 

BCA cells secrete a variety of cytokines and chemokines which promote tumour 
progression. Studies by Tafani et al. (2010), showed that MCF-7 cells upregulate pro-
inflammatory gene transcription and translation in vitro, and a pro-inflammatory gene 
expression profile can be seen in human BCA tumours even in the absence of an immune 
infiltrate. This illustrates that BCA cells themselves contribute to the pro-inflammatory/pro-
tumourigenic TME. One or both of HER2 and ER┙, which are often expressed on BCA cells, 
promote the expression and secretion of CXCL8 (IL-8) through the PI3K and ERK pathways. 
CXCL8 is a pro-angiogenic chemokine and secretion of CXCL8 by the MCF7 BCA line 
(which express both HER2 and ER┙) is additive upon stimulation of both of these receptors 
(Haim et al., 2008). The pro-inflammatory chemokines CCL2 and CCL5 are also secreted by 
BCA cells (Ben-Baruch, 2003) and expression and secretion of all three chemokines requires 
HA fragment/CD44 interactions on TAMs, tumour associated fibroblasts (TAFs) and BCA 
tumour cells. Both CCL2 and CCL5 are monocyte-recruiting chemokines and their 
expression in BCA tumours is correlated with poor prognosis, and in the case of CCL2, pro-
angiogenesis factors and vascular invasion (Soria and Ben-Baruch, 2008). TNF-┙ secretion by 
TAMs activates a positive feedback loop in BCA tumour cells, stimulating further secretion 
of growth promoting chemokines (Ben-Baruch et al., 2003). Eck et al (2009) also showed that 
conditioned media from BCA cells stimulates the expression of pro-inflammatory genes in 
normal mammary fibroblasts, polarizing them towards a TAF phenotype. Furthermore, TAF 
migration is increased, along with the secretion of MMP-1 and CXCR4 (IL-1/SDF-1 
receptor), both of which are important factors in BCA progression (Eck et al., 2009).  
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4.2.2 HA/stromal fibroblast/epithelial cell interaction and tumour progression 

To begin to define the role played by TAFs in tumour progression, Micke et al. (2007) 
conducted cDNA microarray analyses comparing the transcriptome of TAFs from basal cell 
carcinoma with normal dermal fibroblasts (Micke et al., 2007). This study showed that TAFs 
overexpress multiple growth factors such as PDGF, EGF, and VEGF, chemokines such as 
SDF1 and CXCL12 and matrix proteins such as MMP11, LAMA2 and COL5A2. In fact, these 
TAFs are known to secrete IGF-2, FGF-7, TGF-┚, leptin, and NGF, which bind to their 
cognate receptors on BCA cells to stimulate HA production (Szabo et al., 2011). This then 
promotes expression of cytokines such as TGF-┚ that attract and stimulate TAFs to 
proliferate. This paracrine effect is a positive feedback mechanism, because proliferating 
TAFs secrete additional growth factors, cytokines, chemokines, and MMPs that sustain BCA 
transformation and promote BCA progression. Additionally, VEGF, produced by TAFs, and 
HA oligosaccharides induce angiogenesis. HA itself also impairs immune surveillance, 
and/or activates TAMs and neutrophils that have tumour enhancing potential. 
Overexpression of HAS in a non-transformed rat fibroblast, 3Y1, increases high MW HA 
production and the resultant pericellular HA coat provides cells with a proliferation 
advantage that is accompanied by loss of contact inhibition of growth. This is achieved 
through HA-mediated activation of PI3 kinase. Lower MW HA also increases proliferation 
in these cells but has no effect on the HA matrix (Itano et al., 2002). TAFs affect not only BCA 
cells but also normal cells in which the tumour is embedded. For example, TAFs induce 
stem cell-like behaviour and aberrant differentiation in normal fibroblasts, which can affect 
BCA progression. TAFs promote the expression of stem-cell markers such as Oct4 and Sox2 
in 3T3 cells (Szabo et al., 2011) and stimulate trans-differentiation of normal fibroblasts into 
myofibroblasts when they are confronted with primary BCA cells. 

4.2.3 HA, adipocytes and adipose tissue 

Adipose tissue in mammary glands is important for its secretory and endocrinal functions 
as well as metabolism, energy homeostasis and stem cell compartment. Adipocytes 
contribute to the mammary tissue ECM and this effect is at least partly regulated by HA. 
There are not many studies that focus on HA and its relationship to adipocytes, however, 
the importance of this polysaccharide on adipose-stromal interactions in the breast tissue is 
becoming apparent. For example, HA increases the crosslinking of collagen-HA matrices, 
supports proliferation and differentiation of pre-adipocytes and induces a higher proportion 
of cycling cells (Davidenko et al., 2010). 
Chen et al. (2007) also showed that HA extends the lifespan, reduces cellular senescence and 
enhances differentiation potential of murine adipose-derived stromal cells (mADSCs) in 
culture. Collectively, these results provide preliminary evidence for a key role of HA in 
controlling the adipose component of the breast tissue and allude to a potential role of this 
regulation in BCA (Chen et al., 2007). 

5. HA regulates mammary cell functions that promote BCA progression 

5.1 Cell migration 

Considerable evidence indicates that HA fragmentation is required for immune cell 
trafficking, fibroblast migration, stem cell migration from niches to the wound site and 
endothelial cell migration during angiogenesis. For example, acellular hydrogel matrix 
composed of fibronectin and HA, which simulates a wound microenvironment, supports 
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proliferation, migration and spreading of human dermal fibroblasts in vitro. HA seems to 
regulate motility via a variety of mechanisms that include indirect and direct effects on the 
migrating cell population. An example of an indirect effect was provided by a study of the 
role of HA on fibroblast migration using a porcine skin wound model.  The wound matrix, 
which contained HA, promoted cell migration and recruitment of fibroblasts. This was 
shown to be in part due to wounding produced HA, which promotes collagen fibril 
formation, thus indirectly affecting cell motility (Docherty et al., 1989). Direct effects of HA 
on cell motility can result from its structural properties and from its ability to activate 
motogenic signalling cascades such as ERK1,2 and PI3 kinase. Both of these effects have 
been related to an association of HA with cell surface receptors such as CD44 and RHAMM.  
For example, extracellular HA accumulation induces penetration of stromal cells by 
increasing turgidity and hydration or disrupting cell-to-cell junctions. These effects may be a 
result of interactions with CD44 and RHAMM (Itano et al., 2008). HA fragments bind to 
CD44 and/or RHAMM to induce activation of MAPK (ERK1,2) that results in enhanced 
BCA cell migration and invasion (Hamilton et al., 2007). Moreover, upon HA-mediated 
activation of PI3 kinase, increased HAS2 production induces faster migration in scratch 
wound assays (Itano et al., 2002). 

5.2 Angiogenesis 

Hypoxic conditions within tumours require neovascularisation of the microenvironment for 

the tumour to continue to grow and metastasize. Hypoxia, a condition often found within 

the TME, induces the activation, as seen by nuclear translocation, of either or both of NFκB 

and HIF-1┙. This effect has been shown both in vitro in MCF-7 BCA cells, and in vivo (Tafani 

et al., 2010). Invasion, migration, and proliferation of endothelial cells, as well as tissue 

remodelling, are essential processes during angiogenesis, which directly and indirectly help 

to promote tumour growth and metastasis.  Necrotic cells, which have died as a result of 

hypoxia, also release chemokines that recruit macrophages and a pro-inflammatory 

response conducive to tissue remodelling. Hypoxia may produce ROS which in turn cause 

HA fragmentation and Noble et al. (1996) showed that NFκB transcription in macrophages is 

activated by HA fragments (Noble et al., 1996). Later, Rockey et al. (1998) were the first to 

show in hepatocytes that HA activation of NFκB induces NOS2 production, which can be 

synergistically increased in the presence of cytokines such as IFN-┛ (Rockey et al., 1998). It 

has since been shown that HA fragments activate the NFκB pathway through TLR4 in both 

DC and macrophages (Termeer et al., 2002). Hypoxia induced activation of HIF-1┙ and 

NFκB induces pro-inflammatory gene expression and both mRNA and protein levels of 

inflammatory mediators such as RAGE, PTX3, NOS2, COX2, and CXCR4 are increased. 

Increased expression of CXCR4, which is the receptor for SDF-1, is seen on MCF-7 cells 

subjected to hypoxic conditions (Tafani et al., 2010). This increases the migratory and 

invasive capacity of these cells, which are usually non-invasive. In these same studies it was 

found that nuclear translocation of NFκB is at least partly dependent on HIF-1┙, indicating 

that it may be under hypoxic regulation, as inhibition of HIF-1┙ decreases nuclear 

localisation of NFκB, and in turn RAGE and P2X7R expression, inhibiting cell invasion 

(Tafani et al., 2010). 

In general, high MW HA inhibits angiogenesis while fragments promote angiogenesis. 
Overexpression of HA and HYALs has been linked to an increase in angiogenesis in several 
types of cancers including breast (Tan et al., 2010), bladder (Lokeshwar et al., 2000, Golshani 
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et al., 2008), prostate (Ekici et al, 2004, Bharadwaj et al., 2007), and endometrial (Paiva et al., 
2005). Koyama et al. (2007) demonstrated that an increase in HAS2 expression by genetic 
modifications in a mouse model of BCA causes a higher incidence of adenocarcinoma 
accompanied by an increase in angiogenesis (Koyama et al., 2007). An increase in HA by 
overexpression of HAS2 in transgenic mice induces a more aggressive BCA phenotype and 
an increase in blood and lymphatic vessels (Kobayashi et al., 2010). In these tumours, the 
stromal cells also secrete a variety of pro-angiogenic factors. Furthermore, HA concentration 
in stroma and blood vessels is increased, as well as the amount of small HA fragments. 
The pro-angiogenic effects of HA fragments result from the display of CD44 and RHAMM 

(Wang et al., 2011, Slevin et al., 2007) on the surfaces of endothelial, BCA or leukocyte cells. 

and Interaction of HA fragments with these cells produces the factors required for 

stimulating endothelial cells to form new blood vessels. HA fragments stimulate endothelial 

cell proliferation, migration and tube formation. Increased expression of HYALs in 

conjunction with MMPs and Cathepsin-D induce a more invasive phenotype in the 

endothelial cell line ECV-304 as detected by matrigel invasion assay (Wang et al., 2009). 

Additionally, pro-inflammatory cytokines, secreted by leukocytes activated by CD44-HA 

mediated interactions, stimulate endothelial cells to produce HA. When HUVEC cells are 

stimulated with IL-1B, TNF-┙ and ┚1, they secrete HA. CD44-HA interaction stimulates 

early morphogenic events, such as tube formation and proliferation in HUVECs (Wang et 

al., 2011). Furthermore, HA works synergistically with macrophage recruitment to promote 

vascular formation and HA in the stroma promotes lymphangiogenesis at the invasive 

tumour front in BCA through the activation of endothelial LYVE-1 (Itano et al., 2002). 

6. HA and multi-drug resistance in BCA 

Most tumours initially respond to chemotherapy treatment but later acquire resistance, 
resulting in treatment failure and tumour recurrence. Some mechanisms by which tumour 
cells acquire resistance include inhibition of apoptosis, stimulation of cell proliferation and 
enhanced expression and activity of drug export pumps, particularly ATP driven pumps (ABC 
transporters), which reduce the intracellular, and therefore active, concentration of several 
chemotherapeutic agents. HA fragments augment expression and activity of MDR1, a member 
of the ABC drug transporter family, in primary BCA cells (Toole and Slomiany, 2008). This HA 
induced upregulation involves the Akt/PI3 kinase signalling pathway and is CD44 
dependent. CD44-HA interactions stimulate MDR1 expression via multiple signalling 
mechanisms including epigenetic gene expression regulation. CD44-HA binding results in 

activation of PKC as well as increased phosphorylation and nuclear translocation of Nanog, a 
stem cell specific transcription factor. Moreover, interaction of Nanog with Stat-3 in the 
nucleus increases Stat-3 regulated gene expression, resulting in increased expression of MDR1. 
Activation of Nanog also results in production of the micro RNA miR-21 and down-regulation 
of PDCD4, a tumour suppressor protein (Bourguignon et al., 2008, 2009). CD44-HA interaction 
increases an association between MDR1 and the cytoskeletal protein ankyrin, resulting in 
enhanced drug export (Bourguignon et al., 2008). Additionally, CD44-HA interactions 

upregulate the expression of the histone acetyl-transferase, p300, inducing the acetylation of -

catenin and NFB. This stimulates expression of MDR1 and the anti-apoptotic protein, Bcl-xL 

(Bourguignon et al., 2009). It is very likely that BCA tumours with high HA metabolisms are 
also highly resistant to treatment with drugs that can be exported by MDR1.  
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7. HA and receptor antagonists in clinical trials 

Since it is evident that HA and its receptors play an important role in BCA and other 
tumours, it is unsurprising that reagents blocking HA metabolism are being assessed as 
therapeutic agents in certain types of cancer. In pre-clinical models, Kultti et al. (2009) 
demonstrated that the HAS inhibitor 4-MU (4-Methylumbelliferone) specifically depletes 
intracellular levels of UDP-Glc-UA (Kakizaki et al., 2004) by serving as a glucoronidation 
substrate in A2058 melanoma cells, MCF-7, MDA-MB-361 BCA cells, SKOV-3 ovarian, and 
UT-SCC118 squamous carcinoma cells. Additionally, Lokeswar et al. (2010) used 4-MU to 
block growth of human prostate cancer cell line xenografts in immunocompromised mice.  
4-MU induces apoptosis in these tumours and also strongly inhibits cell proliferation, 
motility and invasion. These effects can be reversed by addition of HA, which demonstrates 
that, although 4-MU does not specifically block HAS and has other off target effects, its 
effects on tumour cell growth result from inhibition of HAS (Ekici et al., 2004). 
HA has also proven to be a good adjunct therapeutic option in vivo in human cancers since it 
promotes targeting of active anti-cancer compounds. For example, when patients with 
Calmette-Guérin refractory bladder cancer were included in a Phase I clinical trial using 
Paclitaxel-HA (ONCOFID-P-BTM) for treatment of their cancers, 60% of the patients treated 
exhibited a clinical response with minimal toxicity reported (Bassi et al., 2010). HA has been 
successfully used to carry/target other chemotherapeutics, thus reducing cytotoxic side 
effects of the active drug. Hyung et al. (2008) demonstrated the efficacy of HA-coated drug 
carriers by delivering doxorubicin to MDA-MB-231 and ZR-75-1 human BCA cell lines 
(Hyung et al., 2008). Similarly, after coating nanoparticles containing paclitaxel with HA, 
cytotoxicity is reduced while cellular uptake of the drug by S-180 sarcoma cell line is 
enhanced 9.5 fold in vitro and in a mouse model (He et al., 2009). 
In light of fairly recent evidence for the display of CD44 on BCA tumour initiator cells, 

interest in developing CD44 targeted therapies has increased. Riechelmann et al. (2008) 

exploited the potential of CD44 in a Phase I clinical trial using an antimicrotubule agent 

(mertansine) and a monoclonal antibody to CD44v6 (bivatuzumab), (BIWI 1), to treat 

patients with recurrent or metastatic head and neck squamous cell carcinoma (Riechelmann 

et al., 2008). The response to the treatment was unexpectedly variable and the trials using 

these agents were stopped after one patient died of toxic epidermal necrolysis (Tijink et al., 

2006). Targeting the HA binding ability of activated CD44 may result in decreased toxicity. 

RHAMM peptide vaccination (e.g. R3, which is HLA-A2-restricted) has recently been 
assessed in PhaseI/II clinical trials for treatment of MM, AML, and CLL (Giannopoulos et 
al., 2010, Greiner et al., 2008, 2010, Schmitt et al., 2008). Additionally, vaccination with DC 
pre-stimulated against the same peptide has also undergone Phase I and II clinical trials for 
treatment of CLL (Hus et al., 2008). Vaccination with RHAMM peptide has the attractive 
advantage of very low toxicity because it is not expressed in healthy bone marrow tissue.  
RHAMM vaccination resulted in leukemic blast lysis, blast reduction in the bone marrow 
and avoided the need for blood transfusions for one patient. Furthermore, an 
immunological response, marked by an increase in T cell frequency, was observed in 70% of 
AML, MM, and MDS patients in an initial study (Schmitt et al., 2008). Subsequently, 
RHAMM peptide was shown to be non-toxic at high dosage (1000 µg/vaccination), 
however, there was no dose-dependent effect, indicating that RHAMM is an effective 
therapeutic target even at low levels (Greiner et al., 2010). A similar response was seen in 
CLL patients vaccinated with RHAMM peptide, as well as RHAMM peptide-stimulated DC. 
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Clinical response was correlated with an increase in CD8+ T cell proliferation and in some 
cases a decrease in Treg population. Interestingly, in B-CLL patients with clinical response 
to vaccination with stimulated DC cells, the CD8+ cytotoxic T cell and IL-12 anti-tumour 
response was increased, whereas the Treg cell population was decreased (Hus et al., 2008). 
In a Phase I study of CLL patients vaccinated with RHAMM peptide, there was no 
correlation between clinical response and Treg population dynamics (Giannopoulos et al., 
2010). This strategy has not yet been used for BCA, although, as RHAMM is a prognostic 
marker for BCA. and overexpressed in many cases which currently do not have a specific 
targeted therapeutic option (e.g. basal subtype) and also given the magnitude of the 
response, along with such low toxicity, it is an approach which merits further consideration. 

8. Conclusion 

In summary, HA is a glycosaminoglycan that exerts a critical role in BCA progression by 
interacting with other ECM components and the tumour cells themselves. HA 
fragmentation induces inflammation and signalling that results in cancer and immune cell 
proliferation and migration, which can lead to poor outcome. The links between HA and 
cancer progression, as well as HA and inflammation have in some aspects been well 
established. Given the similarities in their signalling cascades and cellular processes, the 
relationship between HA stimulated innate immunity and the BCA microenvironment 
should be further considered. 
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