61 research outputs found

    Kinetic Modeling and Numerical Simulation as Tools to Scale Microalgae Cell Membrane Permeabilization by Means of Pulsed Electric Fields (PEF) From Lab to Pilot Plants

    Get PDF
    Pulsed Electric Fields (PEF) is a promising technology for the gentle and energy efficient disruption of microalgae cells such as Chlorella vulgaris. The technology is based on the exposure of cells to a high voltage electric field, which causes the permeabilization of the cell membrane. Due to the dependency of the effective treatment conditions on the specific design of the treatment chamber, it is difficult to compare data obtained in different chambers or at different scales, e.g., lab or pilot scale. This problem can be overcome by the help of numerical simulation since it enables the accessibility to the local treatment conditions (electric field strength, temperature, flow field) inside a treatment chamber. To date, no kinetic models for the cell membrane permeabilization of microalgae are available what makes it difficult to decide if and in what extent local treatment conditions have an impact on the permeabilization. Therefore, a kinetic model for the perforation of microalgae cells of the species Chlorella vulgaris was developed in the present work. The model describes the fraction of perforated cells as a function of the electric field strength, the temperature and the treatment time by using data which were obtained in a milliliter scale batchwise treatment chamber. Thereafter, the model was implemented in a CFD simulation of a pilot-scale continuous treatment chamber with colinear electrode arrangement. The numerical results were compared to experimental measurements of cell permeabilization in a similar continuous treatment chamber. The predicted values and the experimental data agree reasonably well what demonstrates the validity of the proposed model. Therefore, it can be applied to any possible treatment chamber geometry and can be used as a tool for scaling cell permeabilization of microalgae by means of PEF from lab to pilot scale. The present work provides the first contribution showing the applicability of kinetic modeling and numerical simulation for designing PEF processes for the purpose of biorefining microalgae biomass. This can help to develop new processes and to reduce the costs for the development of new treatment chamber designs.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Impact of modified atmosphere and humidity packaging on the quality, off-odour development and volatiles of ‘Elsanta’ strawberries

    Get PDF
    Development of off-odours, as well as visual quality of packaged fresh produce plays a crucial role in consumer’s choice. In this context, this work investigated the odour profile, condensation, gas composition, and postharvest quality attributes of strawberries stored under modified atmosphere and humidity packaging at 5 °C for 14 days. The packages were fitted with fixed area (69, 126.5, and 195.5 cm2) of different permeable membranes (NatureFlex, Xtend, and Propafilm). No significant changes were detected on the measured physicochemical quality attributes of strawberries and mass loss was below 1.5% across the different packaging systems. Package modification/design had an influence on in-package water vapour condensation, gas composition, and accumulation of secondary volatile organic compounds (acetaldehyde, acetone, ethanol and ethyl acetate)

    Transpiration and moisture evolution in packaged fresh horticultural produce and the role of integrated mathematical models: A review

    Get PDF
    Transpiration has various adverse effects on postharvest quality and the shelf-life of fresh fruit and vegetables (FFV). If not controlled, the water released through this process results in direct mass loss and moisture condensation inside packaged FFV. Condensation represents a threat to the product quality as water may accumulate on the product surface and/or packaging system, causing defects in external appearance and promoting growth of spoilage microorganisms. Thus, moisture regulation is extremely important for extending FFV shelf-life. This review focuses on transpiration phenomenon and moisture evolution in packaged fresh horticultural produce. It provides recent information on various moisture control strategies suitable for packaging of fresh horticultural produce. It also provides an evaluation on the role and application of integrative mathematical modelling in describing water relations of FFV for packaging design, as well as, an overview of models reported in literature

    Moisture absorption kinetics of FruitPad for packaging of fresh strawberry

    Get PDF
    This study analysed the moisture absorption kinetics of FruitPad embedded with different concentrations of fructose with further application of such pads in packaging of fresh strawberries. The FruitPad was exposed to different storage conditions (temperature and RH) and moisture absorption kinetics was gravimetrically determined over 5 days of storage. FruitPad with 30% fructose showed highest amount of moisture absorption (0.94 g of water/g of pad) at 20 °C and 100% RH. The Weibull model combined with the Flory-Huggins model adequately described changes in moisture content of the FruitPad with respect to storage time and humidity (R2 = 93–96%). The FruitPad containing fructose minimized in-package condensation compared to the pad without fructose. Weight loss of packaged strawberry was less than 0.9% which was much below the acceptable limit of 6% for strawberry

    Condensation regulation of packaged strawberries under fluctuating storage temperature

    Get PDF
    This is the peer reviewed version of the following article: Bovi, G. G., Caleb, O. J., Rauh, C., & Mahajan, P. V. (2019). Condensation regulation of packaged strawberries under fluctuating storage temperature. Packaging Technology and Science, 32(11), 545–554. https://doi.org/10.1002/pts.2470 which has been published in final form at https://doi.org/10.1002/pts.2470. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.Disruption in cold chain during distribution and retail could have a significant impact on in‐package condensation of optimally designed packaged fresh produce. The aim of this work was to regulate in‐package condensation and evaluate the performance of different packaging design systems for strawberries under fluctuating temperatures (between 10°C and 20°C) for 5 days. The design included the use of condensation control strategies, namely, enhanced permeable films (NatureFlex and Xtend) and FruitPad of different fructose content (0%, 20%, 30%, 35%, and 40%). Package performance was evaluated in terms of headspace gas composition, mass loss, condensation, physico‐chemical changes, and visual and ortho‐nasal quality evaluation. Percentage mass loss of packaged strawberries ranged from 0.6% to 4% and was 33% for unpackaged. Results also showed that compared with the control sample, both strategies (enhanced permeable films and FruitPads) were effective in reducing condensation. In addition, transpirational water loss, results of the water absorbed by the FruitPads and transferred through the films were used to understand the packaging design needs under fluctuating temperature

    Impact of different water activities (aw) adjusted by solutes on high pressure high temperature inactivation of Bacillus amyloliquefaciens spores

    Get PDF
    Much research has been conducted to comprehend the mechanisms of high pressure (HP) inactivation of spores in aqueous systems but for food model systems these information are scarce. In these systems spores can interact with ingredients which then could possibly lead to retarded or reduced inactivation, which can cause a problem for the sterilization process. The protective mechanism of a reduced aw-value is still unclear. HP processing might prove valuable to overcome protective effects of solutes and achieve shorter process times for sterilization under HP. To gain insight into the underlying mechanisms five aw-values (0.9, 0.92, 0.94, 0.96, 1) were adjusted with two different solutes (NaCl, sucrose). Solutions were inoculated with spores of Bacillus amyloliquefaciens and treated at 105, 110, and 115°C at 600 MPa. Further a thermal inactivation was conducted at the same temperatures for a comparison with the HP data. Afterward, the influence of HP high temperature treatment on the inactivation, the dipicolinic acid (DPA)-release and membrane constitution was assessed by plate count, HPLC and flow cytometry (FCM). The results show that during HP treatments sucrose and salt both have a protective effect, in which the influence of sucrose on the retarded inactivation is higher. The threshold water activities (aw), which is 0.94, here salt and sucrose have a significant influence on the inactivation. The comparison of thermal (105–115°C) and HP and high temperature (600 MPa, 105–115°C) treated samples showed that the time needed to achieve a 4–5 log10 inactivation is reduced from 45 (aw = 1) to 75 (aw = 0.9) min at 105°C to 3 (aw = 1) to 15 (aw = 0.9) minutes at 600 MPa and 105°C. The release of DPA is the rate limiting step of the inactivation and therefore monitoring the release is of great interest. The DPA-release is slowed down in high concentrated solutions (e.g., sucrose, salt) in comparison to aw 1. Since there is a difference in the way the solutes protect the spore it could be seen as an inner spore membrane effect. Maybe as shown for vegetative microorganism the solutes can interact with membranes, e.g., the inner spore membrane. Flow cytometry (FCM) measurement data show a similar trend

    Impact of surface structure and feed gas composition on Bacillus subtilis endospore inactivation during direct plasma treatment

    Get PDF
    This study investigated the inactivation efficiency of cold atmospheric pressure plasma treatment on Bacillus subtilis endospores dependent on the used feed gas composition and on the surface, the endospores were attached on. Glass petri-dishes, glass beads, and peppercorns were inoculated with the same endospore density and treated with a radio frequency plasma jet. Generated reactive species were detected using optical emission spectroscopy. A quantitative polymerase chain reaction (qPCR) based ratio detection system was established to monitor the DNA damage during the plasma treatment. Argon + 0.135% vol. oxygen + 0.2% vol. nitrogen as feed gas emitted the highest amounts of UV-C photons and considerable amount of reactive oxygen and nitrogen species. Plasma generated with argon + 0.135% vol. oxygen was characterized by the highest emission of reactive oxygen species (ROS), whereas the UV-C emission was negligible. The use of pure argon showed a negligible emission of UV photons and atomic oxygen, however, the emission of vacuum (V)UV photons was assumed. Similar maximum inactivation results were achieved for the three feed gas compositions. The surface structure had a significant impact on the inactivation efficiency of the plasma treatment. The maximum inactivation achieved was between 2.4 and 2.8 log10 on glass petri-dishes and 3.9 to 4.6 log10 on glass beads. The treatment of peppercorns resulted in an inactivation lower than 1.0 log10. qPCR results showed a significant DNA damage for all gas compositions. Pure argon showed the highest results for the DNA damage ratio values, followed by argon + 0.135% vol. oxygen + 0.2% vol. nitrogen. In case of argon + 0.135% vol. oxygen the inactivation seems to be dominated by the action of ROS. These findings indicate the significant role of VUV and UV photons in the inactivation process of B. subtilis endospores

    Characterization of fast-growing foams in bottling processes by endoscopic imaging and convolutional neural networks

    Get PDF
    Regardless of whether the occurrence of foams in industrial processes is desirable or not, the knowledge about the characteristics of their formation and morphology is crucial. This study addresses the measuring of characteristics in foam and the trailing bubbly liquid that result from air bubble entrainment by a plunging jet in the environment of industry-like bottling process es of non-carbonated beverages. Typically encountered during the bottling of fruit juices, this process configuration is characterized by very fast filling speeds with high dynamic system parameter changes. Especially in multiphase systems with a sensitive disperse phase like gas bubbles, the task of its measurement turns out to be difficult. The aim of the study is to develop and employ an image processing capability in real geometries under realistic industrial conditions, e.g. as opposed to a narrow measurement chamber. Therefore, a typically sized test bottle was only slightly modified to adapt an endoscopic measurement technique and to acquire image data in a minimally invasive way. Two convolutional neural networks (CNNs) were employed to analyze irregular non-overlapping bubbles and circular overlapping bubbles. CNNs provide a robust object recognition for varying image qualities and therefore can cover a broad range of process conditions at the cost of a time-consuming training process. The obtained single bubble and population measurements allow approximation, correlation and interpretation of the bubble size and shape distributions within the foam and in the bubbly liquid. The classification of the measured foam morphologies and the influence of operating conditions are presented. The applicability to the described test case as an industrial multiphase process reveals high potential for a huge field of operations for particle size and shape measurement by the introduced method

    Development of a Continuous Pulsed Electric Field (PEF) Vortex-Flow Chamber for Improved Treatment Homogeneity Based on Hydrodynamic Optimization

    Get PDF
    Pulsed electric fields (PEF) treatment is an effective process for preservation of liquid products in food and biotechnology at reduced temperatures, by causing electroporation. It may contribute to increase retention of heat-labile constituents with similar or enhanced levels of microbial inactivation, compared to thermal processes. However, especially continuous PEF treatments suffer from inhomogeneous treatment conditions. Typically, electric field intensities are highest at the inner wall of the chamber, where the flow velocity of the treated product is lowest. Therefore, inhomogeneities of the electric field within the treatment chamber and associated inhomogeneous temperature fields emerge. For this reason, a specific treatment chamber was designed to obtain more homogeneous flow properties inside the treatment chamber and to reduce local temperature peaks, therefore increasing treatment homogeneity. This was accomplished by a divided inlet into the chamber, consequently generating a swirling flow (vortex). The influence of inlet angles on treatment homogeneity was studied (final values: radial angle α = 61°; axial angle β = 98°), using computational fluid dynamics (CFD). For the final design, the vorticity, i.e., the intensity of the fluid rotation, was the lowest of the investigated values in the first treatment zone (1002.55 1/s), but could be maintained for the longest distance, therefore providing an increased mixing and most homogeneous treatment conditions. The new design was experimentally compared to a conventional co-linear setup, taking into account inactivation efficacy of Microbacterium lacticum as well as retention of heat-sensitive alkaline phosphatase (ALP). Results showed an increase in M. lacticum inactivation (maximum Δlog of 1.8 at pH 7 and 1.1 at pH 4) by the vortex configuration and more homogeneous treatment conditions, as visible by the simulated temperature fields. Therefore, the new setup can contribute to optimize PEF treatment conditions and to further extend PEF applications to currently challenging products

    Measurement and modelling of transpiration losses in packaged and unpackaged strawberries

    Get PDF
    Transpiration and respiration are physiological processes well-known as major sources of fresh produce mass loss. Besides causing impairment of external quality, it is associated with economic loss since it inevitably decreases saleable weight. To prevent postharvest mass losses, by improved modified atmosphere and humidity packaging, comprehensive knowledge on the mechanistic basis of both processes and their interactions is essential. The objective of this study was to evaluate the contribution of these processes on mass loss of packaged and unpackaged strawberries. Experiments on a single strawberry were performed at 4, 12 and 20 °C; and 76, 86, 96 and 100% RH. Mass loss was also investigated as a function of number of strawberries and package volume at 12 °C. A combined model based on Arrhenius equation and Fick's first law of diffusion for an unpackaged single strawberry and a model based on degree of filling was developed and validated with packaged strawberries. These models have potential application towards the selection of optimal moisture control strategies for strawberries
    corecore