

Graziele G. Bovi, Oluwafemi J. Caleb, Manfred Linke, Cornelia Rauh, Pramod V. Mahajan

Transpiration and moisture evolution in packaged fresh horticultural produce and the role of integrated mathematical models: A review

Journal article | Accepted manuscript (Postprint) This version is available at https://doi.org/10.14279/depositonce-9718

Bovi, G. G., Caleb, O. J., Linke, M., Rauh, C., & Mahajan, P. V. (2016). Transpiration and moisture evolution in packaged fresh horticultural produce and the role of integrated mathematical models: A review. Biosystems Engineering, 150, 24–39. https://doi.org/10.1016/j.biosystemseng.2016.07.013

Terms of Use This work is licensed under a CC BY-NC-ND 4.0 License (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International). For more information see https://creativecommons.org/licenses/by-nc-nd/4.0/.

1	Transpiration and moisture evolution in packaged fresh
2	horticultural produce and the role of integrated
3	mathematical models: A review
4	
5	In: Biosystems Engineering, 150, 24-39.
6	
7	
8	Cite as: Bovi, G. G., Caleb, O., Linke, M., Rauh, C., & Mahajan, P. (2016). Transpiration and
9	moisture evolution in packaged fresh horticultural produce and the role of integrated
10	mathematical models: A review. Biosystems Engineering, 150, 24-39.
11	doi: https://doi.org/10.1016/j.biosystemseng.2016.07.013
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23 24	
24 25	
25 26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	

39	Transpiration and moisture evolution in packaged fresh horticultural produce and the
40 41	role of integrated mathematical models: A review
42	Graziele G. Bovi ^{a, b} , Oluwafemi J. Caleb ^a , Manfred Linke ^a , Cornelia Rauh ^b , Pramod V. Mahajan ^{a*}
43	
44	^a Department of Horticultural Engineering, Leibniz Institute for Agricultural Engineering (ATB), Potsdam,
45	Germany
46 47	^b Department of Food Biotechnology and Food Process Engineering, Technical University of Berlin, Germany
48	*Corresponding author: Phone: +49 331 5699615; Fax: +49 331 5699849
49	E-mail: pmahajan@atb-potsdam.de (Pramod V. Mahajan)
50	
51	Abstract
52	Transpiration has various adverse effects on postharvest quality and the shelf-life of fresh fruit
53	and vegetables (FFV). If not controlled, the water released through this process results in
54	direct mass loss and moisture condensation inside packaged FFV. Condensation represents a
55	threat to the product quality as water may accumulate on the product surface and/or packaging
56	system, causing defects in external appearance and promoting growth of spoilage
57	microorganisms. Thus, moisture regulation is extremely important for extending FFV shelf-
58	life. This review focuses on transpiration phenomenon and moisture evolution in packaged
59	fresh horticultural produce. It provides recent information on various moisture control
60	strategies suitable for packaging of fresh horticultural produce. It also provides an evaluation
61	on the role and application of integrative mathematical modelling in describing water
62	relations of FFV for packaging design, as well as, an overview of models reported in
63	literature.
64	
65	Keywords: Moisture loss; packaging; humidity control; mathematical modelling; fresh
66	produce; condensation

71 **1. Introduction**

72 Fresh horticultural produce are highly perishable commodities, as they remain metabolically 73 active even after harvest. Fresh produce continues to lose water due to transpiration and 74 respiration process. This turns produce shelf-life into a race against the clock for growers, 75 processors, and retailers to maintain quality and reduce food loss (Mahajan, Caleb, Singh, 76 Watkins, & Geyer, 2014). This water loss is usually associated with economic loss since it 77 causes a decrease in saleable mass, due to shrivelling of the product (Caleb, Mahajan, Al-Said, & Opara, 2013; Veraverbeke, Verboven, Van Oostveldt, & Nicolaï, 2003b). In addition, 78 79 moisture loss of the fresh produce can accumulate on the product surface and/or packaging system, causing defects in external appearance and promoting growth of spoilage 80 81 microorganisms (Kang & Lee, 1998; Linke & Geyer, 2013). This leads to quality 82 deterioration and flavour loss. Hence, it is important to remove or avoid moisture 83 condensation on the product in order to maintain quality and prevent the growth of spoilage-84 causing microorganisms (Powers & Calvo, 2003).

85 According to Fonseca, Oliveira, and Brecht (2002) the goals of postharvest technology are to 86 maintain freshness quality and reduce losses in the postharvest value chain of fresh fruit and 87 vegetables (FFV). Temperature control and modification of atmosphere are important factors 88 to extend a products shelf life (Fonseca et al., 2002). Nevertheless, besides these two factors 89 the control of storage or in-package relative humidity (RH) is of critical importance (Tano, 90 Oulé, Doyon, Lencki, & Arul, 2007). For example, Rux et al. (2015) investigated the 91 transpiration behaviour of mushroom under different temperature and RH, and determined the 92 effect of salt embedded humidity-regulating tray on in-package humidity and condensation 93 behaviour. The authors reported that the humidity-regulating tray absorbed part of the water 94 vapour produced by mushroom during the 6 d of storage, but its regulatory capacity was not 95 efficient to avoid in-package moisture condensation. Therefore, understanding the 96 physiological response of individual fresh horticultural produce towards optimum 97 packaging/storage system design with adequate humidity control is one of the keys to 98 achieving the postharvest technology goals.

99 Furthermore, mathematical modelling plays an important role in predicting the physiological 100 response of FFV under different storage conditions. Mathematical models offer the possibility 101 to describe characteristic changes in biological systems as a function of different 102 environmental conditions, without the need to access these conditions in real time 103 (Castellanos & Herrera, 2015). This makes it possible to optimise packaging design under 104 different storage conditions for FFV (Kang & Lee, 1998), and to estimate the packaging requisites for specific fresh produce (Caleb et al., 2013; Sousa-Gallagher, Mahajan, &Mezdad, 2013).

In this context, the aim of this article is to provide a comprehensive review regarding the transpiration phenomenon and moisture evolution inside packaged fresh horticultural produce. The role and application of integrative mathematical modelling in describing water relations of fresh horticultural produce for packaging design is discussed. In addition, an overview of the various moisture control strategies, mathematical models reported in literature, and future prospects is presented.

113

114 **2.** Transpiration phenomenon in fresh horticultural produce

115 Transpiration is a critical physiological process for FFV (Xanthopoulos, Athanasiou, Lentzou, 116 Boudouvis, & Lambrinos, 2014). Once separated from the mother plant, FFV cannot replace 117 water from the plant and/or soil and depend on their own water content for transpiration and organic substrate for respiration (Caleb et al., 2013). Transpiration phenomenon involves 118 119 three main stages: i) moisture is transported as liquid and vapour from intercellular spaces to 120 and through the skin of the product; ii) moisture is evaporated from the outer surface layer of 121 the product; and iii) convective mass transfer of the moisture to the surroundings (Becker & 122 Fricke, 2001; Veraverbeke, Verboven, Van Oostveldt, & Nicolaï, 2003a). In terms of plant 123 physiology there are four FFV components involved in the transpiration process this include: 124 a) intercellular air spaces, through where water vapour diffuses inside the FFV; b) cuticle, 125 responsible for the transpiration in which liquid water moves to the cell walls on the cuticle 126 side of epidermal cells; where it can evaporate and the vapour is then diffused across the 127 cuticle; c) stomata, through where water vapour diffuses in order to reach the boundary layer; 128 and, d) boundary layer, which is located at the leaf surface and is the final component 129 encountered by diffusing water vapour (Nobel, 2009).

130 Transpiration is driven by a concentration difference and can be described in terms of water 131 activity differences across the membrane, moisture concentration and water vapour pressure 132 differences between a product's surface and its surrounding (Becker & Fricke, 2001; 133 Veraverbeke et al., 2003a, 2003b). Based on this definition, there should theoretically be no 134 potential for transpiration phenomenon at 100% RH (i.e. saturated storage condition) and 135 constant temperature since there is no water vapour pressure difference. However, this is not 136 the case for saturated conditions as transpiration occurs due to the heat generated by the respiration process (Becker & Fricke, 1996; Sastry, Baird, & Buffington, 1977; Tano, 137

Kamenan, & Arul, 2005). Recently, Mahajan et al. (2016) investigated the moisture loss 138 139 behaviour of three different FFV and a dummy evaporation sphere stored at 13 °C, 100% RH. 140 Results showed that despite water vapour saturation the three tested products lost mass at 141 100% RH, while no mass was lost from the evaporating sphere. These results agree with the 142 hypothesis that respiratory heat can significantly influence moisture evolution from FFV 143 under saturated conditions. This implies that transpiration in packaged fresh produce 144 continues where water vapour saturation is commonly observed. It also indicates that the 145 transpiration process under saturated conditions is a complex process that involves different 146 heat components including respiratory heat generated by the product; evaporative cooling 147 effect on the product's surface; convective heat transfer between the product and its 148 surrounding environment.

149

150 **2.1. Potential effect on postharvest quality of fresh horticultural produce**

151 Transpiration phenomenon causes both water loss and evolution of free water from FFV, 152 which may lead to formation of moisture condensation on the surface of product and/or 153 packaging material. The free water, also known as moisture, facilitates the growth of fungal 154 and bacterial pathogens (Holcroft, 2015; Linke & Geyer, 2013). Water loss results in direct 155 mass loss, shrivelling, gloss reduction, limpness and wilting of horticultural produce. As the 156 produce continues to lose water, its appearance, quality, shelf life, profitability, and consumer 157 appeal diminishes (Holcroft, 2015; Thompson, Mitchell, Rumsay, Kasmire, & Crisosto, 158 1998).

159 Water loss affects FFV in different degrees. According to Holcroft (2015), leafy vegetables 160 wilt after approximately 3 - 5% of water loss, while for nectarines shrivelling occur after 19% 161 of water loss. There is extensive literature stating the maximum permissible water loss (%) for 162 a wide range of FFV (Kays & Paull, 2004; Robinson, Browne, & Burton, 1975; Thompson et 163 al., 1998). For instance, the maximum permissible mass loss for grape and nectarine is 5% 164 and 21%, respectively (Kays & Paull, 2004). For summer squash the permissible mass loss is 165 24%, while for broccoli and carrot with leaves it is 4% (Thompson et al., 1998). Also, fresh 166 produce response to transpiration such as biochemical, microbiological, and physiological 167 changes contribute to quality degradation. These responses are usually temperature dependent 168 and affect transpiration of FFV and low RH can raise transpiration damage leading to 169 dehydration, increased respiratory intensity, and loss of product quality (Castellanos & Herrera, 2015). Therefore, optimum temperature and RH should be maintained for eachproduct in order to extend shelf-life and maintain products quality.

172

173 **2.2. Transpiration measurement**

174 Water loss from FFV, also known as moisture loss or transpiration phenomena, is often 175 expressed as the percentage change in mass of the original or initial product mass. The 176 quantity of water loss over a given period of time is considered as the water loss rate, also 177 referred to as rate of moisture loss or transpiration rate (TR) (Maguire, Banks, & Opara, 178 2001). Calculation of the TR based on moisture loss per unit time is the most used and 179 reported method to describe transpiration phenomenon in fresh horticultural produce (Caleb et 180 al., 2013; Castellanos & Herrera, 2015; Mahajan, Oliveira, & Macedo, 2008a; Shirazi & 181 Cameron, 1993; Sousa-Gallagher et al., 2013).

However, there are two main possible approaches to calculate TR of fresh produce. The first approach is by gravimetric measurement of change in product mass over time. The second approach is based on theoretical determination of TR, via the Fick's law of diffusion. It is worth mentioning that the gravimetric measurement of TR is used by many authors to find other parameters, such as the transpiration coefficient and/or tissue and boundary layer resistance that better describes the transpiration phenomenon (Linke, 1997; Sastry & Buffington, 1983; Thompson et al., 1998).

189

190 2.2.1. Gravimetric approach

191 The most commonly reported method for measuring TR is by the gravimetric approach, also 192 known as the mass loss approach, which involves periodically weighing the produce at a 193 given temperature and RH. TR can be directly calculated per unit surface area (TR_s) (Eq. 1) 194 and/or per unit of initial mass (TR_m) (Eq. 2) of the produce:

$$TR_s = \frac{M_i - M_t}{t \cdot A_s} \tag{1}$$

$$TR_m = \frac{M_i - M_t}{t \cdot M_i} \tag{2}$$

197 where M_i is the initial mass of the product; M_t is product mass at a determined time (t); and A_s 198 is the initial surface area of the product. Usually TR_s is commonly expressed in mg cm⁻² h⁻¹ or 199 mg cm⁻² s⁻¹ and TR_m in g kg⁻¹ h⁻¹, mg kg⁻¹h⁻¹ or mg kg⁻¹s⁻¹.

Different experimental methods have been reported for the measurement of TR by the mass loss approach (Fig. 1). In some setups, the balance was located outside the experimental container, which limits continuous measurement of product mass loss. In these cases the 203 product has to be taken out of the container to be measured and opening of the container can 204 result in disturbance of internal atmosphere and RH if it is not carried out with caution 205 (Xanthopoulos et al., 2014). In the experiment conducted by Kang and Lee (1998), the 206 chamber was equipped with gas control to maintain the desired oxygen (O_2) and carbon 207 dioxide (CO₂) concentration in order to incorporate the effect of modified atmosphere as one 208 of the parameters of TR for apples and minimally processed cut vegetables. A novel setup 209 was considered by Mahajan et al. (2016) in their study. The authors included an additional 210 infrared temperature sensor to monitor the products' surface temperature and a sensor for the 211 surrounding environmental conditions.

212

213 **2.2.2. Theoretical approach**

It is well established that transpiration can be visualised as the interaction between a driving
force for mass loss and resistance (Becker & Fricke, 1996, 2001; Leonardi, Baille, &
Guichard, 2000; Sastry, 1985; Sastry & Buffington, 1983). This interaction is expressed
mathematically as:

218

$$TR_m = k_t \cdot (P_s - P_{\infty}) \tag{3}$$

where TR_m is transpiration rate, mass basis (mg kg⁻¹s⁻¹); k_t is transpiration coefficient assumed constant for a specific product (mg kg⁻¹ s⁻¹ MPa⁻¹); P_s is water vapour pressure at the evaporating surface of the product (MPa); and P_∞ is ambient water vapour pressure (MPa). In this mathematical equation the driving force for transpiration is represented by ($P_s - P_\infty$), which is also known as the water vapour pressure deficit (VPD), and the resistance represented by the inverse of the transpiration coefficient (k_t). The k_t can be divided into two terms, as follows:

$$\frac{1}{k_t} = \frac{1}{k_s} + \frac{1}{k_a} \tag{4}$$

where k_s is skin mass transfer (transpiration) coefficient (mg kg⁻¹ s⁻¹ MPa⁻¹) and k_a is air film mass transfer (mg kg⁻¹ s⁻¹ MPa⁻¹), also known as convective mass transfer coefficient or external mass transfer coefficient. Combining Eq. 3 with Eq. 4 yields:

$$TR_m = \frac{P_s - P_\infty}{\frac{1}{k_s} + \frac{1}{k_a}}$$
(5)

What differ among authors in using Eq. 5, are the factors and assumptions that are considered important or negligible in order to calculate k_s and k_a . In Sastry and Buffington (1983), these coefficients were represented by $k_s = \frac{\tau}{\delta\varphi}$ and $k_a = \frac{1}{h_a}$, where δ is the diffusion coefficient of water vapour in air; τ the product skin thickness; φ is fraction of product surface covered by 235 pores; and h_d is convective mass transfer coefficient. In contrast, Fockens and Meffert (1972) 236 expressed skin mass transfer coefficient as $k_s = \frac{\xi_1 \beta}{R_D T}$ and air film mass transfer as $k_a =$ 237 $\frac{\xi_2}{1/\beta + \mu s/\delta}$, where ξ_1 is a fraction of surface behaving as a free water zone (non-dimensional); β 238 is a convective mass transfer coefficient (m s⁻¹); R_D is a universal gas constant (J kg⁻¹°C⁻¹); T 239 is the ambient temperature (°C); ξ_2 fraction of surface behaving as porous membrane (non-240 dimensional); μ is resistance factor (non-dimensional); *s* is skin thickness (m); and δ is 241 diffusion coefficient of water vapour in the air (m² s⁻¹).

Different ranges of transpiration coefficients are shown in Table 1. Limitations of using 242 243 transpiration coefficients are that they are restricted to certain range of experimental conditions; and often product specific. For example, there is a significant difference in 244 transpiration coefficient of carrot ranging from 106 to 3250 mg kg⁻¹ s⁻¹ MPa⁻¹, based on 245 various assumptions adopted in the calculation (Linke & Geyer, 2001). Also, different 246 247 experimental methods are used for determining the transpiration coefficient, which results in 248 different values even for the same product (Sastry & Buffington, 1983). However, Eq. 3 is a 249 simple mathematical equation that can be used to predict the TR of a specific product. In 250 order to use this equation details on transpiration coefficient of the specific product and the 251 calculated water pressure difference between the FFV and surrounding environment are 252 required. To determine the ambient water vapour pressure, psychrometric charts, which relate 253 temperature, RH and water vapour pressure can be used.

254 A similar approach to determine the TR of FFV is by the use a known tissue and boundary 255 layer resistance. Figure 2 presents the dynamics of water loss rate during the postharvest 256 storage of FFV in this approach at constant heat and mass transfer conditions, and under pre-257 defined experimental conditions. The first section is characterised by the atmospheric 258 evaporation of free surface water from the product. In this case the intensity of transpiration is 259 solely dependent on the boundary layer resistance. However, when free water is no longer on 260 the surface, water is transported from inside the produce to the surface, but with an additional 261 resistance due to internal membranes, called tissue resistance. This additional resistance is 262 evident by the decrease in the slope of water loss rate over time as shown in the second 263 section. At this point, the water potential of the produce is also reduced, as shown in the third 264 section (Linke, 1997). The reduction in water potential is important because the flow of liquid 265 and/or gaseous water out of a produce, tissue or plant cell, as well as the rate of water 266 movement directly depends on the water potential gradient between the produce, tissue, or 267 plant cell and the surroundings (Gomez Galindo, Herppich, Gekas, & Sjoholm, 2004: Nobel, 2009). Water potential can be defined as the free energy of water within the respective system, such as produce, tissue, plant cell, or solution compared to that of pure water (Rodov et al., 2010). Thus, water potential is indicative of the true water deficit of a system (Herppich, Mempel, & Geyer, 1999). In addition, in plant physiology, water potential is generally accepted as the best parameter to describe actual tissue water status (Herppich, Mempel, & Geyer, 2001).

In this approach the resistances in the water vapour pathway can be determined by using a modified Fick's law in terms of resistances, as shown in Eqs. 6 and 7, while taking into consideration the conditions presented in section 1 and 2 (Fig. 2).

$$TR_s = \frac{x_p - x_A}{r_B + r_T} \tag{6}$$

where TR_s is transpiration rate, area basis (mg cm⁻² s⁻¹); x_P is volume related water content of air in the intercellular spaces in the centre of the produce (mg cm⁻³); x_A is volume related water content of the air unaffected by the produce (mg cm⁻³); r_B is boundary layer resistance in the water vapour pathway (s cm⁻¹); and r_T is tissue resistance in the water vapour pathway (s cm⁻¹), which includes tissue and skin of the fruit or vegetable. However, the tissue resistance approach becomes negligible when produce surface is wet and therefore the following equation is valid:

$$TR_s = \frac{x_{ps} - x_A}{r_B} \tag{7}$$

where x_{ps} is the water content of the air at the produce surface, mg cm⁻³ (Fig. 3). Tissue resistance is determined by the nature of the plant tissue, which is exclusively dependent on the internal properties of the product, such as the water activity and sugar. Other factors influencing tissue resistance of horticultural produce include pre-harvest conditions and postharvest handling practices (Linke, 1997).

285

291 On the other hand, the boundary layer resistance is determined by the form of FFV epidermal 292 layer. It is dependent on external parameters such as shape, dimensions, and surface structure 293 of the product, as well as environmental conditions such as air flow conditions and surface 294 temperature of the produce. For the determination of the boundary layer resistance the water 295 loss rate has to be measured under natural convection. Once boundary layer resistance is 296 known, tissue resistance can be determined by Eq. 6, as long as the centre of the produce is 297 water saturated. In Table 2 it is possible to visualise different tissue resistance found by Linke 298 and Gever (2000). The boundary layer resistance for single produce items at unrestricted natural convection and room temperatures was in the range between 1 and 4 s cm⁻¹ for small 299

300 and bigger FFV, respectively. Both theoretical approaches for estimating TR, via transpiration 301 coefficient or tissue resistance, have specific limitations due to the different values found in 302 the literature. However, they are very useful tools to calculate the TR of FFV since no 303 experimental data is required.

304

2.3. Factors affecting transpiration

306 **2.3.1.** Intrinsic factors

307 Fresh produce shape and size, expressed as surface area-to-volume or surface area-to-mass 308 ratios, are major factors affecting the TR_m , especially the boundary layer resistance. Products 309 with large surface area to mass ratios provide a considerable contact area with surrounding 310 atmosphere. For example, horticultural products, such as leafy green vegetables and cauliflowers have higher TR_m , when compared to spherical produce such as oranges and 311 312 tomatoes with lower surface area (Sastry, 1985). Similarly, morphological and anatomical 313 characteristics of the FFV also have significant effect on TR, specifically on the tissue 314 resistance. Surface structure for each FFV is unique and those which contain skin and/or a 315 waxy coating such as apple, provide extra layers of resistance and therefore the water loss rate 316 in this product is lower than for products without these structures such as mushroom (Sastry, 317 1985). The skin of FFV acts as a barrier to diffusion of water vapour (Maguire et al., 2001).

Purity level of water content in FFV can also affect the TR of the product. Water content in most FFV contains dissolved/soluble solids (i.e. total soluble solids). Literature has extensively shown that total soluble solids of FFV significantly differs (Beckles, 2012; Mahmood, Anwar, Abbas, Boyce, & Saari, 2012). Thus, vapour pressure at the evaporating surface is determined by Raoult's law and is a little lower than the saturation water vapour pressure at the same temperature (Sastry, 1985). This effect is also known as the vapour pressure lowering effect since it causes a reduction in VPD and directly affects the TR.

Additionally, physiological condition, such as the maturity stage in fresh produce after harvest has been shown to significantly influence on TR. In general, immature and over mature fruit transpires more rapidly than optimally mature fruit due to the permeability of the skin to water vapour (Mishra & Gamage, 2007; Sastry, 1985). The developmental stages of the fruit therefore directly affect the tissue resistance of the product. However, factors are often eliminated as a variable on mathematical models of transpiration due to lack of a reliable quantitative maturity index (Sastry & Buffington, 1983).

332

333 2.3.2. Extrinsic factors

334 Impacts of factors such as temperature and RH on TR of fresh horticultural produce have been 335 extensively investigated over the last decade. Mahajan et al. (2008a) found that by increasing 336 the RH in the storage containers for whole mushrooms from 76% to 96%, TR decreased by 87% at 4 °C, whereas decreasing the temperature from 16 °C to 4 °C decreased the TR by 337 338 61% at 96% RH. Caleb et al. (2013) also showed that by increasing RH inside storage 339 containers for pomegranate arils from 76% to 96%, decreased TR by 83.5% at 5 °C, while 340 decreasing the temperature from 15 °C to 5 °C, TR decreased by 68.9%. Xanthopoulos et al. 341 (2014) reported that the TR for grape tomatoes increased with temperature from 15 °C to 20 342 °C, while it decreased for RH 80% to 92%. These studies showed that humidity is the variable 343 with the greatest effect on TR, and the magnitude of TR decrease is product dependent. 344 Aguirre, Frias, Barry-Ryan, and Grogan (2009) expressed the visual quality of mushroom 345 stored under different temperatures and humidity using VPD instead of the RH to avoid the interaction between temperature and RH. Although VPD is a conventional variable for 346 347 refrigeration technology, package designers and food technologists usually employ the RH.

348 Airflow around fresh produce and/or through the packaged product, also have a significant 349 influence on TR. Baltaci, Linke, and Geyer (2010) measured the water loss rate of artificial 350 fruits (water filled evaporating spheres) inside a plastic box in three layers under natural convection and forced airflow (0.8 m s^{-1}) . The authors showed that differences in TR were 351 352 dependent on the produce position inside and airflow. They also found that TR was higher 353 under forced airflow than under natural convective conditions. Air movement around the 354 product prevents the development of a microenvironment with high-humidity build-up 355 (Sastry, 1985), and this decreases the resistance of the air films to mass transfer.

Physical conditions and surface injuries such as cuts, bruises and scratches on the skin surface of FFV, tend to increase the TR, as they reduce the tissue resistance due to modification of the skin (Holcroft, 2015; Maguire et al., 2001). FFV have 2 to 3 times higher TR after harvest when compared to the steady state values due to the physical injuries caused by detachment from the mother plant (Sastry et al., 1977). However, during the storage period once the injuries are healed TR reduces to a lower and relatively steady value (Sastry, 1985).

Also, heat removed from the evaporating surface during transpiration causes a lowered surface temperature and therefore a decreased vapour pressure at the surface, reducing transpiration (Becker & Fricke, 1996). This effect, also known as evaporative cooling, is more noticeable at high water vapour pressure differences. In this situation evaporation has a considerable effect on the driving force and consequently on transpiration (Sastry, 1985).
However, respiration increases the product's surface temperature because of heat generation
and this increases water vapour pressure at the surface, increasing transpiration (Becker &
Fricke, 1996). This effect, also referred to as respiratory heat generation, is usually low for
moderate water vapour pressure but can grow into a dominant factor at RH close to saturation.
The respiration phenomena produces an additional mass loss due to carbon loss but it is
considered negligible (Sastry, 1985).

373

374 **3. Moisture evolution in packaged fresh horticultural produce**

375 Packaging of FFV leads to accumulation of moisture in the headspace as it acts as an 376 additional barrier for moisture transfer. The main source of this moisture is the product itself, 377 however, temperature fluctuations along the supply chain also plays an important role for 378 moisture evolution and condensation (Powers & Calvo, 2003). Factors affecting moisture 379 transfer and RH in packaged fresh produce are water vapour permeability of the packaging 380 films, transpiration and respiration of product, and storage conditions (Lu, Tang, & Lu, 2013). 381 Therefore, selection of appropriate packaging materials is one of the essential steps for 382 achieving optimum humidity conditions in packaged fresh produce.

383 The optimum humidity levels vary in each product, yet in order to reach the maximal 384 postharvest life span it should be taken into account (Ben-Yehoshua & Rodov, 2002). For 385 most FFV the storage conditions should be within 85% and 98% RH. Nonetheless, for 386 products such as garlic and onion storage at RH higher than 70 to 75% at optimum 387 temperatures results in excessive water absorption leading to rooting, mould development and 388 sprouting (Rodov, Ben-Yehoshua, Aharoni, & Cohen, 2010). In the review by Paull (1999) 389 the possible effects of temperature and RH on fresh commodity quality was extensively 390 discussed. The author also provided a detailed summary of optimum RH and temperature as 391 well as shelf life for a wide range of FFV.

Current modified atmosphere packaging (MAP) designs consider the respiration rate of products as the only important parameter when selecting target gas barrier properties. However, besides in-package gas composition, it is also essential to take into consideration the in-package humidity level. In order to avoid moisture condensation and accelerated growth of spoilage microorganisms (Caleb et al., 2013; Mahajan et al., 2014; Song, Lee, & Yam, 2001). The in-package humidity is determined by transpiration and respiration of the fresh produce and water vapour permeability of the packaging material. Most polymeric 399 materials (polyethylene, polypropylene or polyvinyl chloride) used in MAP have lower water 400 vapour permeability relative to the TR of fresh produce (Rux et al., 2016; Song et al., 2001). 401 This leads to further development of MAP into a modified atmosphere and humidity package 402 (MAHP) system, since evaporated water molecules from the produce are not effectively 403 transmitted across the packaging film and prevail within the package. Hence, the challenge of 404 designing an effective MAHP system is finding a solution to design optimal atmosphere and 405 lessen the risk of in-package moisture condensation while still keeping produce mass loss as 406 low as possible.

407

408 **3.1. Moisture condensation dynamics**

409 Condensation is the process in which water vapour turns into liquid form as a result of 410 temperature differences (Joyce & Patterson, 1994). The temperature at which this process 411 occurs is known as the dew point temperature (Holcroft, 2015). Condensate will be formed on 412 any product that is at or below the dew point temperature of the surrounding air. For every 413 temperature and RH combination at constant pressure, there is a specific and measurable dew 414 point temperature and in order for condensation to appear the temperature has to fall only by a 415 fraction of a degree (Joyce & Patterson, 1994). Therefore, dew point measurement is a very 416 useful parameter to anticipate moisture condensation and develop control measures. It can be 417 measured directly by means of special sensors or calculated from temperature and humidity 418 following the known laws of psychometry. Condensation inside packaged fresh produce 419 occurs when water molecules evaporated from the product surface do not transmit through the 420 packaging film and stay within the package (Fig. 4). Horticultural produce specific shape, 421 dimension and surface structure, as well as environmental parameters such as storage temperature, RH, and air flow conditions around the produce have a direct impact on the 422 423 intensity of condensation process (Rodov et al., 2010).

424 Condensation inside packages of FFV represents a threat to the product quality and safety. It 425 is almost inevitable to avoid moisture condensation in the entire postharvest supply chain due 426 to temperature fluctuations. However, there are some recommendations that can be taken into 427 account in order to minimise the condensation this include: i) storage of the product under 428 strict temperature control; ii) maintenance of a continuous cold chain; iii) perform packaging 429 operation under cold condition; iv) temperature conditioning of the packaging material; v) 430 cool the product to above dew point temperature until they are packed and then cool it to the 431 desired storage temperature; and, v) faster warming of cold fruit in order to reduce the time 432 that the produce is wet (Holcroft, 2015).

433 Gottschalk, Linke, Mészáros, and Farkas (2007) developed a model that predicts the 434 condensation and transpiration process on a single fruit under varying ambient conditions 435 along storage time. The model was validated using eight fruits in an open container. Linke 436 and Gever (2013) determined the condensation dynamics and intensity within plastic film 437 packaging for fruit under fluctuating external temperatures. Using packages of plums as a test 438 case, the authors showed that moisture condensation process occurred with time-delayed and 439 superimposed varying intensities on the surface of the fruit, inner film surface, and inner tray 440 walls (Fig. 5). Moisture condensation in the inner film surface was mainly influenced by flow 441 conditions, external temperature amplitude, and in the inner air volume. On the contrary, 442 moisture condensation on fruit surface was caused primarily by temperature amplitude and 443 cycle time. In summary, for the studied cycle time of 240 min, the condensate remained for 444 53%, 51% and 42% of the cycle time on the inner wall of the tray, plum surface and 445 underneath film, respectively. Further detailed investigations are needed to evaluate and 446 simulate moisture condensate formation via integrative mathematical modelling. Such model 447 can be developed using water vapour related characteristics of packaging materials (water 448 vapour permeability, macro and micro perforations), and physiological characteristics of 449 product (respiration and transpiration) as well as external storage environment (temperature, 450 humidity and air flow).

451

452 **3.2. Moisture condensation control strategies**

453 **3.2.1 Moisture absorbers**

454 This involves the use of various hygroscopic substrates or substances to attract and hold water 455 molecules from the surrounding environment. Desiccant and papers pads are used to wrap 456 fresh produce in order to mitigate moisture accumulation (Ozdemir & Floros, 2004). The use 457 of these salts and polyols packages offers an alternative way to avoid moisture condensation 458 inside the package. It has been shown to have beneficial effect on the shelf life of FFV by 459 reducing microbial growth and preserving colour attributes. Mahajan, Rodrigues, Motel, and 460 Leonhard (2008b) also developed a moisture absorber. Fast absorbing moisture absorbers 461 such as calcium chloride (CaCl₂), potassium chloride (KCl) and sorbitol were mixed with a 462 slow absorbing desiccant such as bentonite in different proportions. Overall results showed 463 that the appearance of mushrooms improved when 5 g of mixed desiccant was packed in 250 464 g of mushroom punnet compared to those packed without desiccant.

465 Similarly, Azevedo, Cunha, Mahajan, and Fonseca (2011) designed desiccants with calcium 466 oxide (CaO), sorbitol, and CaCl₂ in a range of 0.2 - 0.6 g of desiccant mass in varying 467 proportions. The change in moisture content of each of the mixed desiccants was measured at 468 regular intervals up to 5 d at 10 °C. Results showed that optimised desiccant mixture, which 469 contained 0.5, 0.26 and 0.24 g g⁻¹ of CaO, CaCl₂ and sorbitol, respectively, and had a moisture 470 holding capacity of 0.813 g water g⁻¹. Additionally, absorption of excess moisture from the 471 headspace, keeps RH inside the package low (Shirazi & Cameron, 1992). Also, the use of 472 desiccants for FFV with high water activity might lead to excessive moisture loss. Hence, 473 careful application of desiccants based on detailed research is needed.

474

475 **3.2.2 Perforated films**

476 Micro-perforated packaging films are commonly used in fresh produce packaging to enhance 477 O₂ and CO₂ gas permeability and control moisture around FFV. Such packaging films have 478 the advantage to avoid in-package anaerobiosis and therefore may extend the shelf-life and 479 maintain quality of FFV (Jo et al., 2013; Hussein, 2015). Almenar et al. (2007) studied the 480 behaviour of strawberries packaged with two continuous and three micro-perforated films 481 (with different gas permeability) with the purpose of obtaining equilibrium atmospheres of 482 diverse compositions. Results showed that micro-perforated films with one and three holes 483 provided adequate CO₂ and O₂ equilibrium concentrations. However, micro-perforated films 484 do not allow for effective diffusion of water vapour into the environment leading to saturated 485 humidity, moisture condensation and deterioration of fresh packaged horticultural produce 486 (Rodov et al., 2010).

Perforations in a polymeric film is based on a compromise principle since perforations affect the film's permeability to O_2 and CO_2 to a higher extend than to water vapour. With macroperforated packaging films, it is nearly impossible to achieve MA equilibrium, and prevent excessive mass loss and shrivelling of FFV. In ideal packaging, the humidity level should be low enough to prevent moisture condensation but sufficiently high enough to reduce product mass loss, while also having an optimal atmosphere (Rodov et al., 2010).

493

494 **3.2.3 Individual shrink-wrapping**

Individual shrink wrapping (ISW) is a passive form of MAP in which a polymer film with selective permeability to CO_2 , O_2 , ethylene and water is used to pack individual fresh produce in order to maintain its freshness (Dhall, Sharma, & Mahajan, 2012; Megías et al., 2015). The main advantages of this technology are reduced mass loss, minimised fruit deformation, reduced chilling injuries and decay (Dhall et al., 2012). Rodov et al. (2010) reported that shrink wrapping is also efficient in controlling moisture condensation due to a very small headspace volume and negligible temperature differences between the product and the filmsurface.

503 Rao, Rao, and Krishnamurthy (2000) studied the effect of MAP and shrink wrapping on the 504 shelf life of cucumber. Results showed that shrink wrapping with polyethylene film can 505 extend the shelf life of cucumber for up to 24 d at 10°C. Megías et al. (2015) studied the 506 effect of ISW on the postharvest performance of refrigerated fruit from two zucchini cultivars 507 that differ in their sensitivity to cold storage. Results indicated that ISW zucchini packaging 508 led to improved tolerance to chilling simultaneously with a decrease in oxidative stress, 509 respiration rate and ethylene production. Despite the positive results, this approach is limited 510 to spherical or cylindrical products (e.g. cucumber) because if any part of the product is not in contact with the film then it will lead to moisture accumulation (Rodov et al., 2010). 511

512

513 **3.2.4 Enhanced water vapour permeable films**

Various polymers have been developed with relatively high permeability towards water vapour compared to the commonly used polymeric films such as polypropylene or polyethylene. These include co-extruded and bio-degradable polymeric films with enhanced water vapour permeability. Co-extruded films consist of blends of different hydrophilic polyamides with other polymeric and non-polymeric compounds. The different blends allow manufacturing materials varying in water vapour permeability, in accordance with required in-package RH levels (Rodov et al., 2010).

521 As an example, Aharoni et al. (2008) used a co-extruded packaging film Xtend® (StePac, 522 Tefen, Israel) and reported that Xtend® can effectively modify both atmospheric composition and RH inside packaging containing various FFV. Similarly, cellulose-based NatureFlexTM 523 524 (Innovia films, Cumbria, UK) polymeric films also held a good potential for application in packaging of fresh produce as it has a very high water permeability (200 g m⁻² d⁻¹ at 25 °C 525 and 75% RH) as against the conventional polypropylene film with 0.8 g m⁻² d⁻¹ water 526 527 permeability (Sousa-Gallagher et al., 2013). Also, water vapour transmission rate (WVTR) of cellulose based NatureFlexTM polymeric films has been shown to increase with the increase 528 529 RH. Therefore, care must be taken in designing fresh produce packages, as excessively high 530 water permeability can lead to higher product moisture and mass loss.

531

532 **3.2.5 Humidity-regulating trays**

533 Singh, Saengerlaub, Stramm, and Langowski (2010) reported on the application of humidity-534 regulating trays incorporated with varying concentrations of sodium chloride (NaCl) for fresh 535 mushrooms. In this study, different percentages of NaCl were introduced into the polymer 536 matrix of the film from which trays were produced. The authors found that the amount of 537 water vapour absorbed by the tray is directly proportional to the percentage of salt 538 incorporated in the trays. Rux et al. (2015) also reported the use of humidity-regulating trays 539 for mushrooms. Trays were produced with NaCl (18% on a weight basis) between the outer 540 barrier layer (polypropylene) and the inner sealing layer (polypropylene/ ethylene vinyl 541 alcohol/ polyethylene). Results showed that humidity-regulating tray maintained a stable RH 542 (93%) inside the package and it absorbed 4.1 g of water vapour within 6 d at 7 °C and 85% 543 RH storage condition. Yet the absorbed water vapour was not enough to prevent water 544 condensation in the package headspace.

545 Furthermore, Rux et al. (2016) optimised the humidity-regulating tray from a thermoformed 546 multilayer structure: polyethylene (outside)/foamed hygroscopic ionomer (active layer) with 0 547 (T-0 tray) or 12 (T-12 tray) wt.-% NaCl/hygroscopic ionomer (sealing layer, inside). The 548 amount of water absorbed was 7.6 and 13.2 g by T-0 and T-12 trays respectively, which 549 indicates that the moisture absorbed by the tray was directly proportional to the amount of salt 550 incorporated into the tray matrix. The addition of salt into polymer matrix of packaging tray 551 represents a novel approach to control in-package humidity for fresh produce. However, 552 further optimisation via mathematical modelling is required for product specific needs.

553

4. Application of integrative mathematical modelling concept

A packaging system for FFV consists of a respiring produce fully enclosed in a tray type package lidded with permeable film. Changes in the amount of water vapour content inside the package will be dependent on transpirational water loss from the product, water vapour transmitted through the packaging film and the water vapour absorbed by the active moisture control system. As a result the following unsteady-state mass balance equation may be used to describe the rate of change of water vapour in the headspace as a function of time:

561
$$\begin{cases} \text{Water vapour evolution} \\ \text{in a package} \end{cases} = \begin{cases} \text{Transpirational water loss} \\ \text{from the product} \end{cases} - \begin{cases} \text{Water vapour transfer} \\ \text{through packaging film} \end{cases} - \begin{cases} \text{Water vapour absored by the active} \\ \text{moisture control system} \end{cases}$$
(8)

There is a wealth of published information on modelling of moisture evolution in fresh produce (Lu et al., 2013; Mahajan et al., 2016; Rennie & Tavoularis, 2009; Song et al., 2001), yet no systematic study has been conducted to bring all the theoretical models together in a ready to use format. Hence, the sub-sections below present an overview of published models related to product transpiration, water vapour permeation in perforated packaging system andactive moisture control systems.

568

569 **4.1. Moisture evolution due to transpiration**

570 There are two approaches commonly used for the mathematical modelling of the transpiration 571 phenomena. The first is based on the diffusion equations of Fick's law (Leonardi et al., 2000; 572 Maguire et al., 2001), and the second approach is based on heat and mass balances (Kang & 573 Lee, 1998; Lu et al., 2013; Song, Vorsa, & Yam, 2002). The model presented by Sastry 574 (1985) is the most basic form of a transpiration model: $TR = k_i (P_s - P_{\infty})$. This model was 575 applied primarily to storage situations where steady state conditions prevailed and the key 576 assumption was that temperature of product evaporating surface is the same as its surrounding 577 environment. However, an error is observed in the model at saturated environments (i.e. VPD 578 = 0.0) as discussed previously. Therefore, a more complex diffusion model is required to 579 predict transpiration under saturated and stagnant air flow conditions as observed inside 580 packaged fresh produce.

581 Non-linear models for estimating TR based on Fick's first law of diffusion have been reported 582 in the literature, but very little work has been developed in this area, especially for the 583 prediction of TR under MAP systems. There are at least two major reasons why the 584 mathematical modelling of TR for MAP systems are not well developed this includes: i) 585 modelling of this phenomena needs a complete understanding of the dynamic interactions 586 between permeation through the packaging film and evaporation on produce surface as a 587 result of the heat released from respiration; and, ii) existing models are limited to cooling 588 process and bulk storage, which may not be suitable for MAP systems (Song et al., 2002).

589 It is noteworthy to mention that the difference between a TR_m and TR_s model is the unit of the 590 k_s coefficient. Some authors prefer to use it in terms of mass basis (Caleb et al., 2013; Sousa-591 Gallagher et al., 2013) since it is easier to determine the mass of product than its surface area, 592 this makes it a more convenient unit (Sastry, 1985). Other authors emphasised on the 593 significance of expressing transpiration per unit area (Linke, 1997; Xanthopoulos et al., 594 2014), because the area-based transpiration coefficient is not dependent on product mass. An 595 alternative is the use of an area-based transpiration coefficient combined with a statistically 596 determined correlation between surface area and mass for a specific FFV. This approach 597 combines the accuracy of the area based coefficient with the convenience of a quick 598 calculation of the product surface area from the mass.

599 Other approach for modelling TR is based on heat and mass balance between the produce and 600 storage atmosphere and is also shown in Table 3. Kang and Lee (1998) developed a 601 transpiration model to predict moisture loss of fresh produce under ambient and controlled 602 atmosphere conditions. In this model the sum of heat energies transferred through natural 603 convection from surrounding air and generated from respiration inside the produce was 604 assumed to be supplied for evaporating moisture on produce surface. Song et al. (2002) 605 proposed a respiration-transpiration model by applying simultaneous heat and mass transfer 606 principles to known physiological behaviour of fresh produce in MAP. Their model applied 607 the assumption that temperature inside the package was equal to the temperature on the 608 surface of the produce and therefore external heat was negligible. Lu et al. (2013) developed a 609 model for transpiration based on mass change of water vapour. Their model considered; 610 respiratory heat generated by produce, heat absorbed by produce, heat absorbed by gas around 611 the produce, heat absorbed by the package and heat change caused by gas transmission across 612 the package.

613 Mathematical models for transpiration, which takes into consideration the various factors 614 affecting TR, are important tools. They help select targeted package designs with optimum 615 WVTR and help estimate fresh produce shelf life (Kang & Lee, 1998). Models that do not 616 take into account all of the factors can in some cases be satisfactory, but may result in large 617 errors in other cases (Sastry, 1985). However, models that take into account too many factors 618 become complex with limited application flexibility, since some of the parameters may be 619 product specific or not easily measurable. For instance skin thickness, pore fraction in the 620 skin, geometry, thermal diffusivity, and surface cellular structure are factors not easily 621 measured and/or determined (Kang & Lee, 1998). Therefore, an extremely detailed model 622 might not be as useful and convenient as a well-designed simple model (Tanner, Cleland, 623 Opara, & Robertson, 2002). Thus, the development of a successful and accurate mathematical 624 model for transpiration depends on the parameters considered and the assumptions made. In 625 addition, respiration plays an important role on the transpiration phenomena for packaged 626 produce and it is important to take this into account when developing a TR model. Both 627 Fick's law and heat and mass transfer approach can incorporate this parameter.

628

629 **4.2.** Water vapour permeation in perforated packaging systems

Mathematical modelling of mass transfer through perforated packaging is commonly used and
has been extensively reported in the literature. A detailed review on perforation mediated
packaging systems was recently published by Hussein, Caleb, and Opara (2015). An example

of the application of mathematical modelling for perforated packaging system can be found in
the study reported by Fishman, Rodov, and Ben-Yehoshua (1996). The authors developed a
mathematical model to study the influence of film perforations on water vapour flux through
the perforated film (Eq. 9):

$$F_{w} = \propto \left(H_{A} - H\right) \left[\frac{SP_{w}}{L} + \frac{\pi R_{h}^{2} N D_{w}}{L + R_{h}}\right]$$
(9)

637

638 where F_w is the water flux (m³ h⁻¹); α is water vapour concentration under saturation vapour 639 pressure which depends on temperature (non-dimensional); H_A is RH in the ambient 640 atmosphere (non-dimensional); H is RH (non-dimensional); S is film area (m²); P_w is water 641 vapour permeability coefficient of the film found from film specifications (m² h⁻¹); L is film 642 thickness (m); π is 3.14 (non-dimensional); R_h is radius of perforation (m); N is number of 643 pores (non-dimensional); and D_w is the diffusion coefficient of water vapour in air (m² h⁻¹).

644 The overall model showed that perforation had more effects on O₂ concentration than 645 on RH. Although this model was designed for mango fruit; the proposed equations could still 646 be valid for other commodities if appropriate transpiration coefficients are inserted. Ben-647 Yehoshua, Rodov, Fishman, and Peretz (1998) applied the model developed by Fishman et al. 648 (1996) and evaluated the effects of perforation on MAP with bell peppers and mangoes. The 649 results showed that perforating the film affects O₂ and CO₂ concentrations as well as moisture 650 condensation, but not the in-package RH. Lee, Kang, and Renault (2000) developed a model 651 for estimating changes in the atmosphere and humidity within perforated packages of fresh 652 produce. The model was based on mass balances of O₂, CO₂, nitrogen gas (N₂), and water 653 (H₂O) and included respiration, transpiration and terms for gas and water vapour transfer 654 through perforations and films. The water vapour exchange rate through the film was 655 modelled based on Fick's law. Similarly, Techavises and Hikida (2008) developed a model based in Fick's law that included atmospheric gas (O₂, CO₂ and N₂) and water vapour 656 657 exchanges in MAP with perforations. The proposed model showed good prediction of gas 658 concentrations and RH when compared with experimental results. The differential equation 659 used to obtain the volumetric changes inside a perforated MAP of respiring produce for water 660 vapour is presented (Eq. 10):

661
$$\frac{d V_H(t)}{dt} = n_p D_H + A_f K_H \left(P_H - P_T \frac{V_H(t)}{V_T(t)} \right)$$
(10)

where n_p is number of perforations (non-dimensional); D_H is effective permeability of one perforation to water vapour (10⁻⁶ m³ h⁻¹ kPa⁻¹); A_f is surface area of the film package (m²); K_H is water vapour transpiration rate of film to water vapour (10⁻⁶ m³ m⁻² h⁻¹ kPa⁻¹); P_H is partial pressure of water vapour outside the package (kPa); P_T is total pressure inside the 666 package (kPa), equal to 101.325 kPa; $V_T(t)$ is total volume of gases inside the package at time 667 t (10⁻⁶ m³) and effective permeability (D_H) is a function of perforation diameter (d) in mm:

668 $D_H = 2.98 x \, 10^{-2} d^2 + 5.37 x \, 10^{-1} d + 8.22 x \, 10^{-1}$ (11)

The authors reported that Eq. 10 is valid for water and atmospheric gases in a temperature range of 5 to 25 °C and for film thickness smaller than 0.025 mm.

671 Rennie and Tavoularis (2009) also developed a space and time dependent mathematical 672 model for perforation-mediated MAP. The authors considered respiration, transpiration, 673 condensation, heat transfer (evaporative, convective, and conductive), and convective and 674 diffusive transport of O_2 , CO_2 and N_2 and H_2O through the Maxwell-Stefan diffusion and the 675 convection mass balance model (Eq. 12):

676
$$\rho \frac{\partial \omega H_2 O}{\partial t} + \nabla \left(-\rho \,\omega H_2 O \,\sum_{j=1}^n \text{Dij} \left(\nabla x H_2 O + (x H_2 O - \omega H_2 O) \frac{\nabla p}{p} \right) = -\rho \omega H_2 O \cdot u \quad (12)$$

where *ρ* is the gas mixture density (kg m⁻³); *t* is time (s); $ω_{H_20}$ is H₂O mass fraction (nondimensional); *Dij* is the ij component of multicomponent Fick diffusivity (m² s⁻¹); xH₂O is the mole fraction of water (non-dimensional); *p* is the total gas mixture pressure (Pa); and *u* is the velocity vector (m s⁻¹). Their model can be used for steady-state as well as for transient analysis of MAP in a wide range of conditions and is valid to model H₂O transport in the ambient storage environment, the perforations and in the headspace.

Li, Li, and Ban (2010) reported a model applicable to non-perforated and micro-perforated MAP films which simulates changes in concentrations of various gases, such as O_2 , CO_2 , ethylene (C_2H_4) and H_2O inside MAP films over time based on Fick's law of diffusion. While, Mahajan, Rodrigues, and Leflaive (2008c) developed a mathematical model to describe the changes in *WVTR* as a function of perforation diameter, length and storage temperature in perforation-mediated MAP:

689
$$WVTR = 2.28 \ D^{1.72} \ L^{-0.72} \ e^{-\frac{12.62}{RT_s}}$$
(13)

690 where *D* is the perforation diameter (mm), *L* is the perforation length (mm), *R* is the universal 691 gas constant (0.008314 kJ mol⁻¹ K⁻¹) and T_s is the storage temperature (K). These studies 692 present the potential role and application of integrated models in the design of perforation-693 mediated MAP systems for FFV. Their findings also highlight that research needs to develop 694 more flexible and robust models.

695

696 **4.3. Active moisture control systems**

A possible solution to control humidity involves the use of moisture absorbers. In this case the package design requires, in addition to packaging specifications, the selection of appropriate desiccants and specification of the amount to be used. This respiration-transpiration model presented by Song et al. (2002) was thus developed into the new model presented by Song et al. (2001). The new model introduced the moisture sorption behaviour of the absorbent (m) as follows:

703
$$m = k_{sa} m_{ab} (P_i - P_{ab})$$
 (14)

where *m* is moisture absorption rate of the absorbent (kg h⁻¹); k_{sa} is the absorbent mass transfer coefficient that can be experimentally determined absorbent mass transfer coefficient (kg_{water} kg_{dry matter}⁻¹h⁻¹atm⁻¹); m_{ab} is mass of dried absorbent (kg); P_i is water vapour pressure inside the package containing absorbent (atm); and P_{ab} is water vapour pressure on the surface of the absorbent (atm). Additionally, P_{ab} is a function of moisture sorption characteristics of absorbents and can be estimated (Eq. 15):

$$P_{ab} = P_{sp} a_w \tag{15}$$

711 where P_{sp} is saturated water vapour pressure at constant temperature (atm) and a_w is the water 712 activity of the moisture absorbent (non-dimensional), which can be experimentally 713 determined as a function of moisture content. The modified model considered moisture 714 sorption characteristics of absorbent and mass transfer coefficient between adsorbent and 715 package headspace. The model was successfully validated with blueberries using two 716 commercial desiccants, Sanwet (Hoechst Celanese, USA) and Xylitol (Sigma, USA). 717 Although the model predictions were in agreement with experimental data obtained, the 718 amount of condensation inside the packages was not quantified. Therefore, it is not possible to 719 optimise the amount of absorber needed to absorb the excess moisture inside the packages.

Furthermore, Mahajan et al. (2008b) investigated the kinetics of moisture absorption for mixed desiccant (CaCl₂, KCl and sorbitol) at 4, 10, and 16 °C, at different humidity levels (76, 86 and 96%). Change in moisture content of the mixed desiccant with respect to storage time was fitted to a Weibull distribution model (Eq. 16).

724
$$M_t = M_{\infty} \left[1 - e^{\left(\frac{-t}{\beta}\right)} \right]$$
(16)

where M_t is the moisture absorbed (g) at a determined time t (d); M_{∞} is moisture holding capacity at equilibrium (g); and β is the kinetic parameter, which defines the rate of moisture uptake process and it represents the time (d) needed to accomplish 63 % of the moisture uptake process. The moisture holding capacity was found to be dependent on RH, which increased from 0.51 to 0.94 g water g⁻¹ desiccant when RH was increased from 76 to 96%. Similarly, Rux et al. (2016) used a Weibull distribution to fit the moisture uptake data obtained from the individual humidity-regulating trays. The authors found that packaged produce with absorbers lost more mass than control samples. Their findings emphasised the importance of selecting the appropriate and correct amount of moisture absorber in order to prevent excessive mass loss and shrivelling of packaged product.

735

736 **5. Conclusion and future research needs**

737 Harvested horticultural produce are transported from farm to the final consumer. This process 738 involves many challenges since the product continues both metabolic and physiological 739 activities after harvest. Thus, strict control of temperature and RH along the supply chain and 740 storage are decisive factors for maintaining quality of FFV. These factors govern the 741 respiration and transpiration processes and consequently degradation of organic substrates and 742 moisture loss. Appropriate packaging of FFV, under optimum storage conditions, offers a 743 possibility to slow down the physiological processes and extend storage life. However, the 744 control of moisture evolution inside packaged horticultural products is complicated due to 745 numerous factors (intrinsic and extrinsic) and the complexity of their interactions. Therefore, 746 application of integrated mathematical models for water relations presents a possible solution; 747 to integrate different factors affecting moisture evolution inside packaged horticultural 748 products. This is vital in order to match the high physiological product requirements and the 749 mass balance of a packaging system in terms of water vapour inside and outside the package. 750 It will provide a guiding tool for all the role players in food packaging industry on package system optimisation such as selection of packaging film, produce amount, package 751 752 dimensions, perforation, and moisture control strategies; thereby eliminating the "pack-and-753 pray" approach commonly adopted by the food packaging industry.

754

755 Nomenclature

756 TR_s transpiration rate per unit surface area (mg cm⁻²h⁻¹ or mg cm⁻²s⁻¹)

- 757 TR_m transpiration rate per unit of initial mass (g kg⁻¹h⁻¹, mg kg⁻¹h⁻¹ or mg kg⁻¹s⁻¹)
- 758 *RH* relative humidity (%)
- 759 M_i initial mass of the product (mg, g or kg)
- 760 M_t product mass at a determined time (mg, g or kg)
- 761 A_s initial surface area of the product (cm² or m²)
- 762 t time (s, h or d)

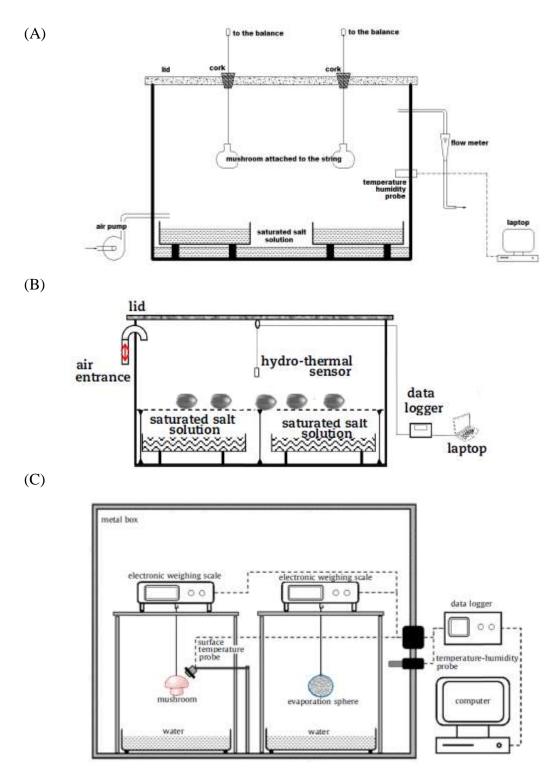
763	k_t	transpiration coefficient (mg kg ⁻¹ s ⁻¹ MPa ⁻¹)
764	P_s	water vapour pressure at the evaporating surface of the product (MPa)
765	P_{∞}	ambient water vapour pressure (MPa)
766	k_s	skin mass transfer coefficient (mg kg ⁻¹ s ⁻¹ MPa ⁻¹)
767	k_a	air film mass transfer (mg kg ⁻¹ s ⁻¹ MPa ⁻¹)
768	δ	diffusion coefficient of water vapour in air (m ² s ⁻¹)
769	τ, s	product skin thickness (m)
770	φ	fraction of product surface covered by pores (non-dimensional)
771	$h_{d,}\beta$	convective mass transfer coefficient(m s ⁻¹)
772	ξ_1	fraction of surface behaving as a free water zone (non-dimensional)
773	$R_{D,}R$	universal gas constant (J kg ⁻¹ °C ⁻¹)
774	Т	ambient temperature (°C)
775	ξ_2	fraction of surface behaving as porous membrane (non-dimensional)
776	μ	resistance factor (non-dimensional)
777	χ_P	volume related water content of air in the intercellular spaces in the centre of the
778		produce (mg cm ⁻³)
779	x_A	volume related water content of air unaffected by produce (mg cm ⁻³)
780	r _B	boundary layer resistance in the water vapour pathway (s cm ⁻¹)
781	r_T	tissue resistance in the water vapour pathway (s cm ⁻¹)
782	x_{ps}	water content of the air at the produce surface (mg cm ⁻³)
783	$F_{\rm w}$	water vapour flux through the perforated film $(m^3 h^{-1})$
784	α	water vapour concentration under saturation vapour pressure (non-dimensional)
785	H_A	relative humidity in the ambient atmosphere (non-dimensional)
786	Η	relative humidity (non-dimensional)
787	$S, A_{f,}$	surface area of the film (m^2)
788	P_w	water vapour permeability coefficient of the film $(m^2 h^{-1})$
789	L	film thickness (m)
790	π	3.14 (non-dimensional)
791	R_h	radius of perforation (m)
792	Ν	number of pores (non-dimensional)
793	D_{w}	diffusion coefficient of water vapour in air $(m^2 h^{-1})$
794	$V_H(t)$	volume of water vapour inside the package at a determined time (10^{-6} m^3)
795	n_p	number of perforations (non-dimensional)
796	D_H	effective permeability of one perforation to water vapor (10 ⁻⁶ m ³ h ⁻¹ kPa ⁻¹)

797	K_H	water vapour transpiration rate of film to water vapour $(10^{-6} \text{m}^3 \text{ m}^{-2} \text{ h}^{-1} \text{ kPa}^{-1})$
798	P_H	partial pressure of water vapour outside the package (kPa)
799	P_T	total pressure inside the package (kPa)
800	$V_T(t)$	total volume of gases inside the package at a determined time (10^{-6} m^3)
801	d, D	perforation diameter (mm)
802	ρ	gas mixture density (kg m ⁻³)
803	$\omega H_2 O$	H ₂ O mass fraction (non-dimensional)
804	Dij	ij component of multicomponent Fick diffusivity (m ² s ⁻¹)
805	xH_2O	mole fraction of H ₂ O (non-dimensional)
806	ωj	mass fraction of H ₂ O (non-dimensional)
807	р	total gas mixture pressure (Pa)
808	и	velocity vector (m s ⁻¹)
809	L	perforation length (mm)
810	T_s	storage temperature (K)
811	т	moisture absorption rate of the absorbent (kg h ⁻¹)
812	k _{sa}	absorbent mass transfer coefficient $(kg_{H2O} kg_{dry matter}^{-1} h^{-1} atm^{-1})$
813	m_{ab}	is mass of dried absorbent (kg);
814	P_i	is water vapour pressure inside the package containing absorbent (atm)
815	P_{ab}	is water vapour pressure on the surface of the absorbent (atm)
816	P_{sp}	saturated water vapour pressure at constant temperature (atm)
817	a_w	is the water activity of the moisture absorbent (non-dimensional)
818	M_t	is the moisture absorbed (g) at a determined time (days)
819	M_{∞}	is moisture holding capacity at equilibrium (g)
820	В	kinetic parameter (non-dimensional)

Acknowledgment

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through a PhD grant (201623/2015-3) to G.B. Graziele. The Georg Forster Postdoctoral Research Fellowship (HERMES) programme from the Alexander von Humboldt Foundation (Ref. ZAF–1160635–GFHERMES–P) is also appreciated.

References


- Aguirre, L., Frias, J. M., Barry-Ryan, C., & Grogan, H. (2009). Modelling browning and brown spotting of mushrooms (Agaricus bisporus) stored in controlled environmental conditions using image analysis. *Journal of Food Engineering*, *91*(2), 280-286.
- Aharoni, N., Rodov, V., Fallik, E., Porat, R., Pesis, E., & Lurie, S. (2008). *Controlling humidity improves efficacy of modified atmosphere packaging of fruits and vegetables*. Paper presented at the EURASIA Sym. on Quality Management in Postharvest Systems. Acta Horticulturae (ISHS) 804: 121-128.
- Almenar, E., Del-Valle, V., Hernández-Muñoz, P., Lagarón, J. M., Catalá, R., & Gavara, R. (2007). Equilibrium modified atmosphere packaging of wild strawberries. *Journal of the Science* of Food and Agriculture, 87(10), 1931-1939.
- Azevedo, S., Cunha, L. M., Mahajan, P. V., & Fonseca, S. C. (2011). Application of simplex lattice design for development of moisture absorber for oyster mushrooms. *Procedia Food Science*, *1*, 184-189.
- Baltaci, D., Linke, M., & Geyer, M. (2010). *Transpiration loss of fresh produce in transport packages a base for a shelf life prediction model*. Paper presented at the 6th International Postharvest Symposium. Acta Horticulturae (ISHS) 877: 1351-1353.
- Becker, B. R., & Fricke, B. A. (1996). Transpiration and respiration of fruits and vegetables New Developments in Refrigeration for Food Safety and Quality (Refrigeration science and technology) (pp. 110-121): International Institute of Refrigeration, Paris, France & American Society of Agricultural Engineers.
- Becker, B. R., & Fricke, B. A. (2001). A numerical model of commodity moisture loss and temperature distribution during refrigerated storage. Acta Hort. Paper presented at the II International Symposium on Application of Modelling as an Innovative Technology in the Agri-Food Chain. Acta Horticulturae (ISHS) 566: 431-436.
- Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. *Postharvest Biology and Technology*, 63(1), 129-140.
- Ben-Yehoshua, S., & Rodov, V. (2002). Transpiration and water stress. In J. Barz & J. K. Brecht (Eds.), *Postharvest Physiology and Pathology of Vegetables* (pp. 111-159). NY, USA: Marcel Dekker.
- Ben-Yehoshua, S., Rodov, V., Fishman, S., & Peretz, J. (1998). Modified-atmosphere packaging of fruits and vegetables: reducing condensation of water in bell peppers and mangoes. Acta Horticulturae (ISHS) 464: 387-392.
- Caleb, O. J., Mahajan, P. V., Al-Said, F. A., & Opara, U. L. (2013). Transpiration rate and quality of pomegranate arils as affected by storage conditions. *CyTA - Journal of Food*, 11(3), 199-207.

- Castellanos, D. A., & Herrera, A. O. (2015). Mathematical models for the representation of some physiological and quality changes during fruit storage. *Journal of Postharvest Technology*, 03(01), 18-35.
- Dhall, R. K., Sharma, S. R., & Mahajan, B. V. C. (2012). Effect of shrink wrap packaging for maintaining quality of cucumber during storage. *Journal of food science and technology*, 49(4), 495-499.
- Fishman, S., Rodov, V., & Ben-Yehoshua, S. (1996). Mathematical Model for Perforation Effect on Oxygen and Water Vapor Dynamics in Modified-Atmosphere Packages. *Journal of Food Science*, *61*(5), 956-961.
- Fockens, F. H., & Meffert, H. F. T. (1972). Biophysical properties of horticultural products as related to loss of moisture during cooling down. *Journal of the Science of Food and Agriculture, 23*(3), 285-298.
- Fonseca, S. C., Oliveira, F. A. R., & Brecht, J. K. (2002). Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: a review. *Journal of Food Engineering*, *52*(2), 99-119.
- Gomez Galindo, F., Herppich, W., Gekas, V., & Sjoholm, I. (2004). Factors affecting quality and postharvest properties of vegetables: integration of water relations and metabolism. *Crit Rev Food Sci Nutr, 44*(3), 139-154.
- Gottschalk, K., Linke, M., Mészáros, C., & Farkas, I. (2007). Modeling Condensation and Evaporation on Fruit Surface. *Drying Technology*, *25*(7-8), 1237-1242.
- Herppich, W. B., Mempel, H., & Geyer, M. (1999). Effects of postharvest mechanical and climatic stress on carrot tissue water relations. *Postharvest Biology and Technology*, 16(1), 43-49.
- Herppich, W. B., Mempel, H., & Geyer, M. (2001). Osmotic and elastic adjustment, and product quality in cold-stored carrot roots (Daucus carota L.). *Gartenbauwissenschaft 66(1): 20-26*.
- Holcroft, D. (2015). Water relations in harvested fresh produce. The Postharvest Education Foundation (PEF). PEF White Paper No. 15-01.
- Hussein, Z., Caleb, O. J., & Opara, U. L. (2015). Perforation-mediated modified atmosphere packaging of fresh and minimally processed produce—A review. *Food Packaging and Shelf Life*, *6*, 7-20.
- Jo, Y. H., Kim, N. Y., An, D. S., Lee, H. J., & Lee, D. S. (2013). Modified atmosphere container equipped with gas diffusion tube automatically controlled in response to real-time gas concentration. *Biosystems Engineering*, 115, 250-259.
- Joyce, D., & Patterson, B. (1994). Postharvest water relations in horticultural crops: principles and problems [review].[Conference paper]. ACIAR Proceedings-Australian Centre for International Agricultural Research (Australia).
- Kang, J. S., & Lee, D. S. (1998). A kinetic model for transpiration of fresh produce in a controlled atmosphere. *Journal of Food Engineering*, *35*(1), 65-73.
- Kays, S. J., & Paull, R. E. (2004). Postharvest Biology: Exon Press, Athens, GA, 568 p.
- Lee, S. L., Kang, J. S., & Renault, P. (2000). Dynamics of internal atmosphere and humidity in perforated packages of peeled garlic cloves. *International Journal of Food Science & Technology, 35*(5), 455-464.
- Leonardi, C., Baille, A., & Guichard, S. (2000). Predicting transpiration of shaded and non-shaded tomato fruits under greenhouse environments. *Scientia Horticulturae*, *84*(3–4), 297-307.
- Li, L., Li, X.-H., & Ban, Z.-J. (2010). A Mathematical Model of the Modified Atmosphere Packaging (MAP) System for the Gas Transmission Rate of Fruit Produce. *Food Technology and Biotechnology, 48*(1), 71-78.

- Linke, M. (1997). *Modelling and predicting the postharvest behaviour of fresh vegetables*. Paper presented at the In Proceedings of 3rd IFAC Workshop on Mathematical and Control Applications in Agriculture and Horticulture, Hannover, Germany.
- Linke, M., & Geyer, M. (2000). *Determination of flow conditions close to the produce*. Paper presented at the In Improving Postharvest Technologies of Fruits, Vegetables and Ornamentals, Murcia, Spain.
- Linke, M., & Geyer, M. (2001). *Postharvest transpiration behavior of vegetables a new approach.* Paper presented at the In Proccedings of the 4th International Conference on Postharvest Science. Acta Horticulturae (ISHS) 553: 487-490, Jerusalem, Israel.
- Linke, M., & Geyer, M. (2013). Condensation dynamics in plastic film packaging of fruit and vegetables. *Journal of Food Engineering*, *116*(1), 144-154.
- Lu, L.-x., Tang, Y.-I., & Lu, S.-y. (2013). A Kinetic Model for Predicting the Relative Humidity in Modified Atmosphere Packaging and Its Application in Lentinula edodes Packages. *Mathematical Problems in Engineering, 2013*, 8.
- Maguire, K. M., Banks, N. H., & Opara, L. U. (2001). Factors Affecting Weight Loss of Apples Horticultural Reviews (pp. 197-234): John Wiley & Sons, Inc.
- Mahajan, P. V., Caleb, O. J., Singh, Z., Watkins, C. B., & Geyer, M. (2014). Postharvest treatments of fresh produce. *Philos Trans A Math Phys Eng Sci*, *372*(2017), 1-16.
- Mahajan, P. V., Oliveira, F. A. R., & Macedo, I. (2008a). Effect of temperature and humidity on the transpiration rate of the whole mushrooms. *Journal of Food Engineering*, 84(2), 281-288.
- Mahajan, P. V., Rodrigues, F. A. S., Motel, A., & Leonhard, A. (2008b). Development of a moisture absorber for packaging of fresh mushrooms (Agaricus bisporous). *Postharvest Biology and Technology*, 48(3), 408-414.
- Mahajan, P. V., Rodrigues, F. A. S., & Leflaive, E. (2008c). Analysis of water vapour transmission rate of perforation-mediated modified atmosphere packaging (PM-MAP). *Biosystems Engineering*, 100(4), 555-561.
- Mahajan, P. V., Rux, G., Caleb, O. J., Linke, M., Herppich, W., & Geyer, M. (2016). Mathematical model for transpiration rate at 100% humidity for designing modified humidity packaging. Paper presented at the III International Conference on Fresh-cut Produce. Acta Horticulturae (ISHS), University of California, Davis.
- Mahmood, T., Anwar, F., Abbas, M., Boyce, M. C., & Saari, N. (2012). Compositional variation in sugars and organic acids at different maturity stages in selected small fruits from pakistan. *International Journal of Molecular Science*, *13*(2), 1380-1392.
- Megías, Z., Martínez, C., Manzano, S., García, A., Rebolloso-Fuentes, M. d. M., Garrido, D., . . . Jamilena, M. (2015). Individual Shrink Wrapping of Zucchini Fruit Improves Postharvest Chilling Tolerance Associated with a Reduction in Ethylene Production and Oxidative Stress Metabolites. *PLoS ONE*, *10*(7).
- Mishra, V. K., & Gamage, T. V. (2007). Postharvest Physiology of Fruit and Vegetables Handbook of Food Preservation, Second Edition (pp. 19-48): CRC Press.
- Nobel, P. S. (2009). Chapter 8 Leaves and Fluxes *Physicochemical and Environmental Plant Physiology (Fourth Edition)* (pp. 364-437). San Diego: Academic Press.
- Ozdemir, M., & Floros, J. D. (2004). Active food packaging technologies. *Critical Reviews in Food Science and Nutrition, 44*(3), 185-193.
- Paull, R. (1999). Effect of temperature and relative humidity on fresh commodity quality. *Postharvest Biology and Technology*, *15*(3), 263-277.
- Powers, T. H., & Calvo, W. J. (2003). 9 Moisture regulation *Novel Food Packaging Techniques* (pp. 172-185): Woodhead Publishing.

- Rao, D. S., Rao, K. G., & Krishnamurthy, S. (2000). Extension of shelf life of cucumber by modified atmosphere packaging (MAP) and shrink wrapping. *Indian Food Packer*, *54*(5), 65-71.
- Rennie, T. J., & Tavoularis, S. (2009). Perforation-mediated modified atmosphere packaging: Part
 I. Development of a mathematical model. *Postharvest Biology and Technology*, *51*(1), 1-9.
- Robinson, J. E., Browne, K. M., & Burton, W. G. (1975). Storage characteristics of some vegetables and soft fruits. *Annals of Applied Biology*, *81*(3), 399-408.
- Rodov, V., Ben-Yehoshua, S., Aharoni, N., & Cohen, S. (2010). Modified Humidity Packaging of Fresh Produce *Horticultural Reviews, Volume 37* (pp. 281-329): John Wiley & Sons, Inc.
- Rux, G., Mahajan, P. V., Geyer, M., Linke, M., Pant, A., Saengerlaub, S., & Caleb, O. J. (2015). Application of humidity-regulating tray for packaging of mushrooms. *Postharvest Biology and Technology*, 108, 102-110.
- Rux, G., Mahajan, P. V., Linke, M., Pant, A., Sängerlaub, S., Caleb, O. J., & Geyer, M. (2016).
 Humidity-Regulating Trays: Moisture Absorption Kinetics and Applications for Fresh Produce Packaging. *Food and Bioprocess Technology*, 9(4), 709-716.
- Sastry, S. K. (1985). Moisture losses from perishable commodities: recent research and developments. *International Journal of Refrigeration, 8*(6), 343-346.
- Sastry, S. K., Baird, C. D., & Buffington, D. E. (1977). Transpiration rates of certain fruits and vegetables. In F. r. o. A. r. p. R.-. 172 (Ed.), *Final report on ASHRAE research project RP -*172 (pp. 1-146): University of Florida.
- Sastry, S. K., & Buffington, D. E. (1983). Transpiration rates of stored perishable commodities: a mathematical model and experiments on tomatoes. *International Journal of Refrigeration*, 6(2), 84-96.
- Shirazi, A., & Cameron, A. C. (1992). Controlling Relative Humidity in Modified Atmosphere Packages of Tomato Fruit. *HortScience*, *27*(4), 336-339.
- Shirazi, A., & Cameron, A. C. (1993). Measuring transpiration rates of tomato and other detached fruit. *HortScience : a journal of the American Society for Horticultural Science,* 28(10), 1035-1038.
- Singh, P., Saengerlaub, S., Stramm, C., & Langowski, H. C. (2010). Humidity regulating packages containing sodium chloride as active substance for packing of fresh raw Agaricus mushrooms. Paper presented at the 4th Int. Workshop Cold Chain Management (ed. Kreyenschmidt J, editor.), Bonn, Germany: University of Bonn.
- Song, Y., Lee, D. S., & Yam, K. L. (2001). Predicting relative humidity in modified atmosphere packaging system containing blueberry and moisture absorbent. *Journal of Food Processing and Preservation*, 25(1), 49-70.
- Song, Y., Vorsa, N., & Yam, K. L. (2002). Modeling respiration–transpiration in a modified atmosphere packaging system containing blueberry. *Journal of Food Engineering*, *53*(2), 103-109.
- Sousa-Gallagher, M. J., Mahajan, P. V., & Mezdad, T. (2013). Engineering packaging design accounting for transpiration rate: Model development and validation with strawberries. *Journal of Food Engineering*, 119(2), 370-376.
- Tanner, D. J., Cleland, A. C., Opara, L. U., & Robertson, T. R. (2002). A generalised mathematical modelling methodology for design of horticultural food packages exposed to refrigerated conditions: part 1, formulation. *International Journal of Refrigeration*, 25(1), 33-42.
- Tano, K., Kamenan, A., & Arul, J. (2005). Respiration and transpiration characteristics of selected fresh fruits and vegetables. *Agronomie africaine*, *17*(2), 103-115.

- Tano, K., Oulé, M. K., Doyon, G., Lencki, R. W., & Arul, J. (2007). Comparative evaluation of the effect of storage temperature fluctuation on modified atmosphere packages of selected fruit and vegetables. *Postharvest Biology and Technology*, 46(3), 212-221.
- Techavises, N., & Hikida, Y. (2008). Development of a mathematical model for simulating gas and water vapor exchanges in modified atmosphere packaging with macroscopic perforations. *Journal of Food Engineering*, *85*(1), 94-104.
- Thompson, J. F., Mitchell, F. G., Rumsay, T. R., Kasmire, R. F., & Crisosto, C. H. (1998). Commercial Cooling of Fruits, Vegetables, and Flowers: University of California, Division of Agriculture and Natural Resources, Oakland, Publication 21567, pp.1 - 61.
- Veraverbeke, E. A., Verboven, P., Van Oostveldt, P., & Nicolaï, B. M. (2003a). Prediction of moisture loss across the cuticle of apple (Malus sylvestris subsp. mitis (Wallr.)) during storage: Part 1. Model development and determination of diffusion coefficients. *Postharvest Biology and Technology, 30*(1), 75-88.
- Veraverbeke, E. A., Verboven, P., Van Oostveldt, P., & Nicolaï, B. M. (2003b). Prediction of moisture loss across the cuticle of apple (Malus sylvestris subsp. mitis (Wallr.)) during storage: part 2. Model simulations and practical applications. *Postharvest Biology and Technology*, 30(1), 89-97.
- Xanthopoulos, G. T., Athanasiou, A. A., Lentzou, D. I., Boudouvis, A. G., & Lambrinos, G. P.
 (2014). Modelling of transpiration rate of grape tomatoes. Semi-empirical and analytical approach. *Biosystems Engineering*, 124, 16-23.

Fig. 1. Schematic representation of a typical experimental setup for used for noncontinuous (A and B) and continuous (C) measurement of produce mass loss (Adopted from Mahajan et al. (2008a), Xanthopoulos et al. (2014), and Rux et al. (2015), respectively)

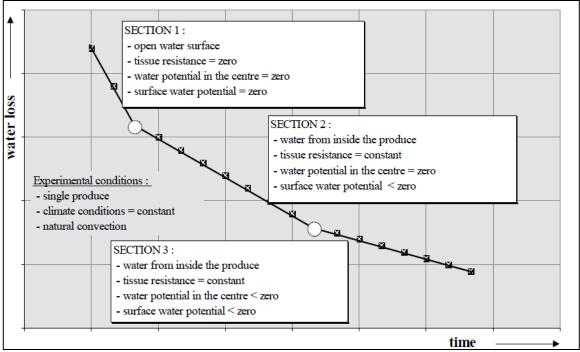


Fig. 2. Sections describing the typical water loss of fruit and vegetables during postharvest storage (Adopted from Linke, 1997)

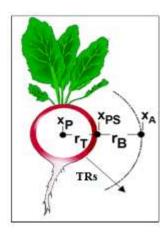


Fig. 3. Basic relations for calculating tissue and boundary layer resistances (Adopted from Linke, 1998)

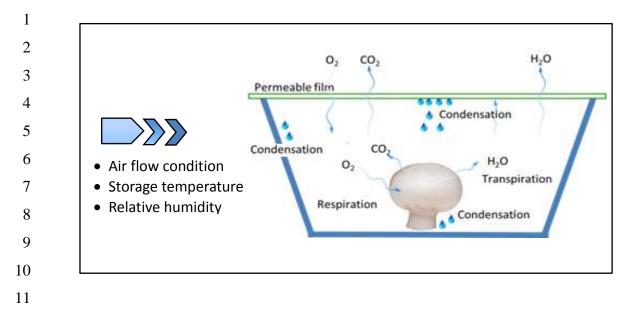
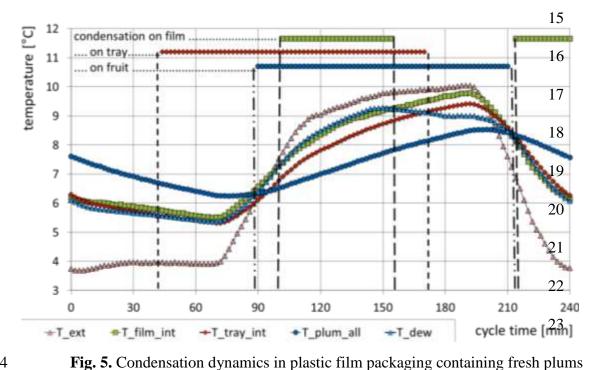



Fig. 4. Condensation in packaged fresh produce and environmental parameters impacting the condensation process

(Adopted from Linke & Geyer, 2013)

Table 1. Range of transpiration coefficients for some fresh fruit and vegetables

Fruit	$k_t (mg kg^{-1} s^{-1} MPa^{-1})$	Vegetables	$k_t (mg kg^{-1} s^{-1} MPa^{-1})$
Apple	16 - 100	Potato	2 - 171
Pear	10 - 144	Onion	13 - 123
Grapefruit	29 - 167	Tomato	71 - 365
Orange	25 - 227	Cabbage	40 - 667
Grapes	21-254	Lettuce	680 - 8750
Plum	110 - 221	Leek	530 - 1042
Lemon	139 - 229	Carrot	106 - 3250
Peach	142 - 2089	Celery	104 - 3313

30 Source: Thompson et al., 1998 compiled from Sastry et al., 1977

Table 2. Tissue resistance of single fresh fruit and vegetables after harvest at natural convection

	Fruit	Tissue Resistance	Vegetables	Tissue Resistance	
		$(r_{\rm T}, \rm s \ cm^{-1})$		$({\bf r}_{\rm T}, {\rm s} {\rm cm}^{-1})$	
	Strawberries	3 - 23	Radish tubers	0.25 - 1.5	
	Plums	23 - 38	Carrots (without	1 - 6	
			leaves)		
	Apples	170 - 320	White asparagus	11 - 12.5	
			Bell peppers	35 - 80	
33	Source: Linke and Geyer, 2	000; Linke and Geyer, 2001			
34					
25					
35					
36					
37					
38					
39					
40					
41					
42					
43					
44					
45					
46					
47					
48					

Proposed model equation	Unit	Storage conditions	Product	TR Range	Limitation	Reference
$\frac{Q_r W + h A (T - T_p)}{\Lambda}$	kg h ⁻¹	T: 0 RH: 100	Apple	18.4 ² (normal air) 5.7 ² (1%O ₂ ,1%CO ₂) 8.7 ² (3% O ₂ , 3%CO ₂)	Model was not validated; not tested in MAP (tested in controlled atmosphere)	Kang and Lee, 1998
		T: 10 RH: 82	Fresh-cut onion Fresh-cut green onion	447 ² (normal air) 363 ² (normal air)		
$\frac{Q_r W + W C_s \frac{dT_{sp}}{dt}}{\Lambda}$	kg h ⁻¹	T: 15, 25 RH: 10, 60	Blueberry	NG	T inside the package was considered equal to the $T_{\rm s}$	Song et al., 2002
$\rho \cdot K_i \cdot (a_{wi} - a_w) \cdot (1 - e^{-aT})$	mg cm ⁻² h ⁻¹	T: 4, 10, 16 RH: 76, 86, 96	Mushrooms	0.14 - 2.51	Model not tested in MAP; does not consider RR	Mahajan et al., 2008
$K_{i} \cdot (a_{wi} - a_{w}) \cdot (1 - e^{-aT})$	g kg ⁻¹ 24h ⁻¹	T: 5, 10, 15 RH: 76, 86, 96	Pomegranate arils	48 - 698 ²	Model not tested in MAP; does not consider RR	Caleb et al., 2013
	$g kg^{-1} h^{-1}$	T: 5, 10, 15 RH: 76, 86, 96	Strawberries	240 - 1160 ²	Model does not consider RR	Sousa-Gallagher et al., 2013
$K_i \cdot e^{\left[-\frac{E_a}{R}\left(\frac{1}{T-T_r}\right)\right]} \cdot (a_{wi} - a_w) \rho \cdot K_i \cdot e^{\left[-\frac{E_a}{R}\left(\frac{1}{T-T_r}\right)\right]} \cdot (a_{wi} - a_w)$	$g kg^{-1} h^{-1}$ mg cm ⁻² h ⁻¹	T:10, 15, 20 RH: 70, 80, 92	Grape tomato	18 - 107 ² 0.012 - 0.058 ¹	Model not validated; does not consider RR	Xanthopoulos et al., 2014
$K_{i} \cdot (a_{wi} - a_{w}) \cdot (1 - e^{-aT}) + 8.6 RR_{C02,r} \cdot e^{\frac{-Ea}{R} \left[\frac{1}{(T+273)} - \frac{1}{(Tr+273)} \right]}$	mg kg ⁻¹ h ⁻¹	T:13 RH: 100	Mushrooms Strawberries Tomato	713 ² 122 ² 17.6 ²	Model was not validated	Mahajan et al., 2016

49 **Table 3.** Summary of transpiration rate models applied for various horticultural commodities under different storage conditions and their limitations.

¹ mg cm⁻²h⁻¹ (area based); ² mg kg⁻¹h⁻¹ (mass based); T is temperature (°C), RH is relative humidity (%), RR is respiration rate Q_r-respiration heat of produce; W-

51 produce weight; h-convective heat transfer coefficient; A-produce surface area; T_s -surrounding temperature; Tp-produce temperature; Λ -latent heat of moisture

52 evaporation/vaporization; C_s is specific heat of the produce, T_{sp} product surface temperature; ρ -water density; K_i -mass transfer coefficient; a_w -water activity of the container; a_{wi} -

water activity of the commodity; a-coefficient; E_a -activation energy; R-universal gas constant; Tr-reference temperature; $RR_{CO2,ref}$ -respiration rate of the product at Tr and 8.6 is the

54 conversion factor for obtaining TR from the respiratory heat generation, NG is not given.

55