8 research outputs found

    Dosimetric impact of gastrointestinal air column in radiation treatment of pancreatic cancer

    Get PDF
    OBJECTIVE: Dosimetric evaluation of air column in gastrointestinal (GI) structures in intensity modulated radiation therapy (IMRT) of pancreatic cancer. METHODS: Nine sequential patients were retrospectively chosen for dosimetric analysis of air column in the GI apparatus in pancreatic cancer using cone beam CT (CBCT). The four-dimensional CT (4DCT) was used for target and organs at risk (OARs) and non-coplanar IMRT was used for treatment. Once a week, these patients underwent CBCT for air filling, isocentre verification and dose calculations retrospectively. RESULTS: Abdominal air column variation was as great as ±80% between weekly CBCT and 4DCT. Even with such a large air column in the treatment path for pancreatic cancer, changes in anteroposterior dimension were minimal (2.8%). Using IMRT, variations in air column did not correlate dosimetrically with large changes in target volume. An average dosimetric deviation of mere -3.3% and a maximum of -5.5% was observed. CONCLUSION: CBCT revealed large air column in GI structures; however, its impact is minimal for target coverage. Because of the inherent advantage of segmentation in IMRT, where only a small fraction of a given beam passes through the air column, this technique might have an advantage over 3DCRT in treating upper GI malignancies where the daily air column can have significant impact. Advances in knowledge: Radiation treatment of pancreatic cancer has significant challenges due to positioning, imaging of soft tissues and variability of air column in bowels. The dosimetric impact of variable air column is retrospectively studied using CBCT. Even though, the volume of air column changes by ± 80%, its dosimetric impact in IMRT is minimum

    The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells

    No full text
    Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through proximity labeling of transient protein interactions in cell-free Xenopus laevis egg extract identified the dimeric histone chaperone facilitates chromatin transcription (FACT) as an interactor of substrate-bound Cas9. FACT is both necessary and sufficient to displace dCas9, and FACT immunodepletion converts Cas9's activity from multi-turnover to single turnover. In human cells, FACT depletion extends dCas9 residence times, delays genome editing, and alters the balance between indel formation and homology-directed repair. FACT knockdown also increases epigenetic marking by dCas9-based transcriptional effectors with a concomitant enhancement of transcriptional modulation. FACT thus shapes the intrinsic cellular response to Cas9-based genome manipulation most likely by determining Cas9 residence times

    High-level correction of the sickle mutation is amplified in vivo during erythroid differentiation

    No full text
    Background A point mutation in sickle cell disease (SCD) alters one amino acid in the β-globin subunit of hemoglobin, with resultant anemia and multiorgan damage that typically shortens lifespan by decades. Because SCD is caused by a single mutation, and hematopoietic stem cells (HSCs) can be harvested, manipulated, and returned to an individual, it is an attractive target for gene correction. Results An optimized Cas9 ribonucleoprotein (RNP) with an ssDNA oligonucleotide donor together generated correction of at least one β-globin allele in more than 30% of long-term engrafting human HSCs. After adopting a high-fidelity Cas9 variant, efficient correction with minimal off-target events also was observed. In vivo erythroid differentiation markedly enriches for corrected β-globin alleles, indicating that erythroblasts carrying one or more corrected alleles have a survival advantage. Significance These findings indicate that the sickle mutation can be corrected in autologous HSCs with an optimized protocol suitable for clinical translation.ISSN:2589-004

    Age, sex, colour and disability discrimination in America

    No full text
    corecore