31 research outputs found

    Serological evidence of influenza a viruses in frugivorous bats from Africa

    Get PDF
    Bats are likely natural hosts for a range of zoonotic viruses such as Marburg, Ebola, Rabies, as well as for various Corona- and Paramyxoviruses. In 2009/10, researchers discovered RNA of two novel influenza virus subtypes - H17N10 and H18N11 - in Central and South American fruit bats. The identification of bats as possible additional reservoir for influenza A viruses raises questions about the role of this mammalian taxon in influenza A virus ecology and possible public health relevance. As molecular testing can be limited by a short time window in which the virus is present, serological testing provides information about past infections and virus spread in populations after the virus has been cleared. This study aimed at screening available sera from 100 free-ranging, frugivorous bats (Eidolon helvum) sampled in 2009/10 in Ghana, for the presence of antibodies against the complete panel of influenza A haemagglutinin (HA) types ranging from H1 to H18 by means of a protein microarray platform. This technique enables simultaneous serological testing against multiple recombinant HA-types in 5μl of serum. Preliminary results indicate serological evidence against avian influenza subtype H9 in about 30% of the animals screened, with low-level cross-reactivity to phylogenetically closely related subtypes H8 and H12. To our knowledge, this is the first report of serological evidence of influenza A viruses other than H17 and H18 in bats. As avian influenza subtype H9 is associated with human infections, the implications of our findings from

    Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction

    Get PDF
    We present two real-time reverse-transcription polymerase chain reaction assays for a novel human coronavirus (CoV), targeting regions upstream of the E gene (upE) or within open reading frame (ORF)1b, respectively. Sensitivity for upE is 3.4 copies per reaction (95% confidence interval (CI): 2.5-6.9 copies) or 291 copies/mL of sample. No cross-reactivity was observed with coronaviruses OC43, NL63, 229E, SARS-CoV, nor with 92 clinical specimens containing common human respiratory viruses. We recommend using upE for screening and ORF1b for confirmation

    Взаємодія системи "політика-релігія"

    Get PDF
    Досліджено феномен суспільних явищ політики і релігії у перерізі їх взаємодії, вивчено історичний досвід такого взаємного впливу. Окреме місце відведено аналізу практичного застосування закону України “Про свободу совісті та релігійні організації”.The article explores the phenomenon of social phenomena politics and religion in the context of their interaction, exploring the historical experience of such mutual influence. A separate analysis is given to the practical application of the Law of Ukraine “On Freedom of Conscience and Religious Organizations”

    Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR

    Get PDF
    BackgroundThe ongoing outbreak of the recently emerged novel coronavirus (2019-nCoV) poses a challenge for public health laboratories as virus isolates are unavailable while there is growing evidence that the outbreak is more widespread than initially thought, and international spread through travellers does already occur.AimWe aimed to develop and deploy robust diagnostic methodology for use in public health laboratory settings without having virus material available.MethodsHere we present a validated diagnostic workflow for 2019-nCoV, its design relying on close genetic relatedness of 2019-nCoV with SARS coronavirus, making use of synthetic nucleic acid technology.ResultsThe workflow reliably detects 2019-nCoV, and further discriminates 2019-nCoV from SARS-CoV. Through coordination between academic and public laboratories, we confirmed assay exclusivity based on 297 original clinical specimens containing a full spectrum of human respiratory viruses. Control material is made available through European Virus Archive - Global (EVAg), a European Union infrastructure project.ConclusionThe present study demonstrates the enormous response capacity achieved through coordination of academic and public laboratories in national and European research networks

    Plasma mediators in patients with severe COVID-19 cause lung endothelial barrier failure

    Get PDF
    Plasma of COVID-19 patients induces pulmonary microvascular barrier failure which increases with disease severity. Here, we report a versatile high-throughput screening platform to test for involved plasma mediators and the therapeutic potential of barrier stabilising compounds

    Proficiency testing of virus diagnostics based on bioinformatics analysis of simulated in silico high-throughput sequencing data sets

    Get PDF
    Quality management and independent assessment of high-throughput sequencing-based virus diagnostics have not yet been established as a mandatory approach for ensuring comparable results. The sensitivity and specificity of viral high-throughput sequence data analysis are highly affected by bioinformatics processing using publicly available and custom tools and databases and thus differ widely between individuals and institutions. Here we present the results of the COMPARE [Collaborative Management Platform for Detection and Analyses of (Re-) emerging and Foodborne Outbreaks in Europe] in silico virus proficiency test. An artificial, simulated in silico data set of Illumina HiSeq sequences was provided to 13 different European institutes for bioinformatics analysis to identify viral pathogens in high-throughput sequence data. Comparison of the participants’ analyses shows that the use of different tools, programs, and databases for bioinformatics analyses can impact the correct identification of viral sequences from a simple data set. The identification of slightly mutated and highly divergent virus genomes has been shown to be most challenging. Furthermore, the interpretation of the results, together with a fictitious case report, by the participants showed that in addition to the bioinformatics analysis, the virological evaluation of the results can be important in clinical settings. External quality assessment and proficiency testing should become an important part of validating high-throughput sequencing-based virus diagnostics and could improve the harmonization, comparability, and reproducibility of results. There is a need for the establishment of international proficiency testing, like that established for conventional laboratory tests such as PCR, for bioinformatics pipelines and the interpretation of such results

    Preclinical safety and efficacy of a therapeutic antibody that targets SARS-CoV-2 at the sotrovimab face but is escaped by Omicron

    Get PDF
    The recurrent emerging of novel viral variants of concern (VOCs) with evasion of preexisting antibody immunity upholds severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) case numbers and maintains a persistent demand for updated therapies. We selected the patient-derived antibody CV38-142 based on its potency and breadth against the VOCs Alpha, Beta, Gamma, and Delta for preclinical development into a therapeutic. CV38-142 showed in vivo efficacy in a Syrian hamster VOC infection model after post-exposure and therapeutic application and revealed a favorable safety profile in a human protein library screen and tissue cross-reactivity study. Although CV38-142 targets the same viral surface as sotrovimab, which maintains activity against Omicron, CV38-142 did not neutralize the Omicron lineages BA.1 and BA.2. These results highlight the contingencies of developing antibody therapeutics in the context of antigenic drift and reinforce the need to develop broadly neutralizing variant-proof antibodies against SARS-CoV-2

    Antibodies against MERS coronavirus in dromedaries, United Arab Emirates, 2003 and 2013

    Get PDF
    Middle East respiratory syndrome coronavirus (MERSCoV) has caused an ongoing outbreak of severe acute respiratory tract infection in humans in the Arabian Peninsula since 2012. Dromedaries have been implicated as possible viral reservoirs. We used serologic assays to analyze 651 dromedary serum samples from the United Arab Emirates; 151 of 651 samples were obtained in 2003, well before onset of the current epidemic, and 500 serum samples were obtained in 2013. Recombinant spike protein-specific immunofluorescence and virus neutralization tests enabled clear discrimination between MERS-CoV and bovine CoV infections. Most (632/651, 97.1%) dromedaries had antibodies against MERS-CoV. This result included all 151 serum sampl

    90K/LGALS3BP expression is upregulated in COVID-19 but may not restrict SARS-CoV-2 infection

    Get PDF
    Glycoprotein 90K, encoded by the interferon-stimulated gene LGALS3BP, displays broad antiviral activity. It reduces HIV-1 infectivity by interfering with Env maturation and virion incorporation, and increases survival of Influenza A virus-infected mice via antiviral innate immune signaling. Its antiviral potential in SARS-CoV-2 infection remains largely unknown. Here, we analyzed the expression of 90K/LGALS3BP in 44 hospitalized COVID-19 patients at multiple levels. We quantified 90K protein concentrations in serum and PBMCs as well as LGALS3BP mRNA levels. Complementary, we analyzed two single cell RNA-sequencing datasets for expression of LGALS3BP in respiratory specimens and PBMCs from COVID-19 patients. Finally, we analyzed the potential of 90K to interfere with SARS-CoV-2 infection of HEK293T/ACE2, Calu-3 and Caco-2 cells using authentic virus. 90K protein serum concentrations were significantly elevated in COVID-19 patients compared to uninfected sex- and age-matched controls. Furthermore, PBMC-associated concentrations of 90K protein were overall reduced by SARS-CoV-2 infection in vivo, suggesting enhanced secretion into the extracellular space. Mining of published PBMC scRNA-seq datasets uncovered monocyte-specific induction of LGALS3BP mRNA expression in COVID-19 patients. In functional assays, neither 90K overexpression in susceptible cell lines nor exogenous addition of purified 90K consistently inhibited SARS-CoV-2 infection. Our data suggests that 90K/LGALS3BP contributes to the global type I IFN response during SARS-CoV-2 infection in vivo without displaying detectable antiviral properties in vitro

    Distinct tissue niches direct lung immunopathology via CCL18 and CCL21 in severe COVID-19

    Get PDF
    Prolonged lung pathology has been associated with COVID-19, yet the cellular and molecular mechanisms behind this chronic inflammatory disease are poorly understood. In this study, we combine advanced imaging and spatial transcriptomics to shed light on the local immune response in severe COVID-19. We show that activated adventitial niches are crucial microenvironments contributing to the orchestration of prolonged lung immunopathology. Up-regulation of the chemokines CCL21 and CCL18 associates to endothelial-to-mesenchymal transition and tissue fibrosis within these niches. CCL21 over-expression additionally links to the local accumulation of T cells expressing the cognate receptor CCR7. These T cells are imprinted with an exhausted phenotype and form lymphoid aggregates that can organize in ectopic lymphoid structures. Our work proposes immune-stromal interaction mechanisms promoting a self-sustained and non-resolving local immune response that extends beyond active viral infection and perpetuates tissue remodeling
    corecore