15 research outputs found

    Stability assessment of the (A)ATSR sea surface temperature climate dataset from the European Space Agency Climate Change Initiative

    Get PDF
    Sea surface temperature is a key component of the climate record, with multiple independent records giving confidence in observed changes. As part of the European Space Agencies (ESA) Climate Change Initiative (CCI) the satellite archives have been reprocessed with the aim of creating a new dataset that is independent of the in situ observations, and stable with no artificial drift (<0.1 K decade−1 globally) or step changes. We present a method to assess the satellite sea surface temperature (SST) record for step changes using the Penalized Maximal t Test (PMT) applied to aggregate time series. We demonstrated the application of the method using data from version EXP1.8 of the ESA SST CCI dataset averaged on a 7 km grid and in situ observations from moored buoys, drifting buoys and Argo floats. The CCI dataset was shown to be stable after ~1994, with minimal divergence (~0.01 K decade−1) between the CCI data and in situ observations. Two steps were identified due to the failure of a gyroscope on the ERS-2 satellite, and subsequent correction mechanisms applied. These had minimal impact on the stability due to having equal magnitudes but opposite signs. The statistical power and false alarm rate of the method were assessed

    A pathway to generating Climate Data Records of sea-surface temperature from satellite measurements

    No full text
    In addition to having known uncertainty characteristics, Climate Data Records (CDRs) of geophysical variables derived from satellite measurements must be of sufficient length to resolve signals that might reveal the signatures of climate change against a background of larger, unrelated variability. The length of the record requires using satellite measurements from many instruments over several decades, and the uncertainty requirement implies that a consistent approach be used to establish the errors in the satellite retrievals over the entire period. Retrieving sea-surface temperature (SST) from satellite is a relatively mature topic, and the uncertainties of satellite retrievals are determined by comparison with collocated independent measurements. To avoid the complicating effects of near-surface temperature gradients in the upper ocean, the best validating measurements are from ship-board radiometers that measure, at source, the surface emission that is measured in space, after modification by its propagation through the atmosphere. To attain sufficient accuracy, such ship-based radiometers must use internal blackbody calibration targets, but to determine the uncertainties in these radiometric measurements, i.e. to confirm that the internal calibration is effective, it is necessary to conduct verification of the field calibration using independent blackbodies with accurately known emissivity and at very accurately measured temperatures. This is a well-justifiable approach to providing the necessary underpinning of a Climate Data Record of SST

    A concurrent multi-axis differential optical absorption spectroscopy system for the measurement of tropospheric nitrogen dioxide

    Full text link
    The development of a new concurrent multi-axis sky viewing spectrometer for monitoring rapidly changing urban concentrations of nitrogen dioxide is detailed. The concurrent multi-axis differential optical absorption spectroscopy (CMAX-DOAS) technique involves simultaneous spectral imaging of the zenith and off-axis measurements of spatially resolved scattered sun-light. Trace gas amounts are retrieved from the measured spectra using the established DOAS technique. The potential of the CMAX DOAS technique to derive information on rapidly changing concentrations and the spatial distribution of nitrogen dioxide in an urban environment is demonstrated. Three example datasets are presented from measurements during 2004 of tropospheric NO2 over Leicester, UK (52.62 °N, 1.12 °W). The data demonstrates the current capabilities and future potential of the CMAX-DOAS method in terms of the ability to measure the real-time spatially disaggregated urban NO2

    Spatially resolved measurements of nitrogen dioxide in an urban environment using concurrent multi-axis differential optical absorption spectroscopy

    Get PDF
    A novel system using the technique of concurrent multi-axis differential optical absorption spectroscopy system has been developed and applied to the measurement of nitrogen dioxide in an urban environment. Using five fixed telescopes, slant columns of nitrogen dioxide, ozone, water vapour, and the oxygen dimer, O4, are simultaneously retrieved in five vertically separated viewing directions. The application of this remote sensing technique in the urban environment is explored. Through the application of several simplifying assumptions a tropospheric concentration of NO2 is derived and compared with an urban background in-situ chemiluminescence detector. Trends derived from remote sensing and in-situ techniques show agreement to within 15 to 40% depending on conditions. Owing to the high time resolution of the measurements, the ability to image and quantify plumes within the urban environment is demonstrated. The CMAX-DOAS measurements provide a useful measure of overall NO2 concentrations on a city-wide scale
    corecore