445 research outputs found
Protein characteristics of Chinese black-grained wheat
Protein properties of black-grained wheat (BGW) were compared with those of five carefully selected wheat controls (Taifen 1, Klasic, Yecora Rojo, Glenlea and Anza) in order to find potential uses for BGW. Protein content, mixing properties, gluten index and amino acid composition were measured. BGW whole meal had a higher protein content (17.71%) than was found in controls. Gluten index of BGW flour (69.74) was generally low compared to controls. Mid-line peak times determined using mixograph were significantly longer (p < 0.05) for most controls (5.41-6.27 min) in comparison to BGW flour (<3.00 min). Dough stickiness (223.76 g) of BGW was somewhat stronger than that of Klasic and CES flours. Total essential amino acid and total amino acid contents in whole meal were 4.45% and 15.74%, respectively, for BGW. The amino acid composition was relatively stable after high-temperature drying of wet BGW gluten. In vitro protein digestibility of BGW wheat meal was the lowest. © 2005 Elsevier Ltd. All rights reserved.postprin
Supersymmetry and Generic BSM Models in PYTHIA 8
We describe the implementation of supersymmetric models in PYTHIA 8,
including production and decay of superparticles and allowing for violation of
flavour, CP, and R-parity. We also present a framework for importing generic
new-physics matrix elements into PYTHIA 8, in a way suitable for use with
automated tools. We emphasize that this possibility should not be viewed as the
only way to implement new-physics models in PYTHIA 8, but merely as an
additional possibility on top of the already existing ones. Finally we address
parton showers in exotic colour topologies, in particular ones involving colour
epsilon tensors and colour sextets.Comment: 20 page
Improved Parton Showers at Large Transverse Momenta
Several methods to improve the parton-shower description of hard processes by
an injection of matrix-element-based information have been presented over the
years. In this article we study (re)weighting schemes for the first/hardest
emission. One objective is to provide a consistent matching of the POWHEG
next-to-leading order generator to the Pythia shower algorithms. Another is to
correct the default behaviour of these showers at large transverse momenta,
based on a comparison with real-emission matrix elements
Matching Tree-Level Matrix Elements with Interleaved Showers
We present an implementation of the so-called CKKW-L merging scheme for
combining multi-jet tree-level matrix elements with parton showers. The
implementation uses the transverse-momentum-ordered shower with interleaved
multiple interactions as implemented in PYTHIA8. We validate our procedure
using e+e--annihilation into jets and vector boson production in hadronic
collisions, with special attention to details in the algorithm which are
formally sub-leading in character, but may have visible effects in some
observables. We find substantial merging scale dependencies induced by the
enforced rapidity ordering in the default PYTHIA8 shower. If this rapidity
ordering is removed the merging scale dependence is almost negligible. We then
also find that the shower does a surprisingly good job of describing the
hardness of multi-jet events, as long as the hardest couple of jets are given
by the matrix elements. The effects of using interleaved multiple interactions
as compared to more simplistic ways of adding underlying-event effects in
vector boson production are shown to be negligible except in a few sensitive
observables. To illustrate the generality of our implementation, we also give
some example results from di-boson production and pure QCD jet production in
hadronic collisions.Comment: 44 pages, 23 figures, as published in JHEP, including all changes
recommended by the refere
Effects of salt water on the ballistic protective performance of bullet-resistant body armour
Bullet-resistant body armour is used by law enforcement agencies and military personnel worldwide, often in inclement weather. Some fibre types used in body armour perform poorly when wet, resulting in a reduced level of protection; this is why most body armour protective elements are water-repellent treated and/or protected by a water-resistant cover. Some of the users operate in the maritime environment. The effect of salt water on body armour performance has not been previously reported. In this work the effect of soaking body armour in salt water and exposing body armour for up to 10 soaking and drying cycles in salt water was investigated. The effectiveness of the water-resistant cover was investigated by considering three cover conditions: (i) intact, (ii) cut and (iii) removed. Wet armour was heavier and provided significantly less protection from 9 mm Luger FMJ ammunition when compared to not-exposed armour irrespective of cover condition. A degradation in performance of armours exposed to soaking and drying cycles was noted, but this was similar across all regimes considered (one, three, five and ten cycles) and not as great as for wet armours
Interleaved Parton Showers and Tuning Prospects
General-purpose Monte Carlo event generators have become important tools in
particle physics, allowing the simulation of exclusive hadronic final states.
In this article we examine the Pythia 8 generator, in particular focusing on
its parton-shower algorithms. Some relevant new additions to the code are
introduced, that should allow for a better description of data. We also
implement and compare with 2 to 3 real-emission QCD matrix elements, to check
how well the shower algorithm fills the phase space away from the soft and
collinear regions. A tuning of the generator to Tevatron data is performed for
two PDF sets and the impact of first new LHC data is examined
- …