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Abstract. Visual servoing allows to control the motion of a robot us-
ing information from its visual sensors to achieve manipulation tasks.
In this work we design and implement a robust visual servoing frame-
work for reaching and grasping behaviours for a humanoid service robot
with limited control capabilities. Our approach successfully exploits a
5-degrees of freedom manipulator, overcoming the control limitations of
the robot while avoiding singularities and stereo vision techniques. Us-
ing a single camera, we combine a marker-less model based tracker for
the target object, a pattern tracking for the end-effector to deal with
the robot’s inaccurate kinematics, and alternate pose based visual servo
technique with eye-in-hand and eye-to-hand configurations to achieve a
fully functional grasping system. The overall method shows better results
for grasping than conventional motion planing and simple inverse kine-
matics techniques for this robotic morphology, demonstrating a 48.8% of
increment in the grasping success rate.
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1 Introduction

Grasping is considered to be simple for humans, yet it is not so simple for robots
expected to operate in a dynamic environment. It requires information of the
object’s position, shape and environment among others. Studies demonstrate
that for humans most of this information is obtained through vision [1-3]. Hence,
the importance of visual control techniques that allow to handle the motion of
a robotic system with the information extracted from the vision sensors.

The objective of this work is to enable visual servoing (VS)-based reaching
and grasping behaviours for a service robot with limited control capabilities.
We demonstrated our system using a Pepper humanoid robot from Softbank
Robotics [4,5].

There are many works that apply VS techniques on robots with morphologies
that account for greater than 6-degrees-of-freedom (DOF) manipulators and ap-
ply stereo vision for target pose calculation such as [6-11]. However, our method
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uses VS techniques with the purpose of reaching and grasping on a service robot
with a limited control system using a single camera. [7]

The proposed approach uses Pepper’s 5-DOF and a single camera located
in its mouth. We combine a marker-less model based tracker (MBT) for the
target object, a pattern tracking for the end-effector to deal with the inaccuracy
of the robot kinematics and lack of proprioceptive sensing, and alternate pose-
based-visual-servoing (PBVS) with eye-in-hand-and /eye-to-hand configurations
to achieve a fully functional grasping system. The time performance proves it to
be suitable for real time applications, being less than a minute to complete the
reaching and grasping tasks.

We demonstrate that VS can be effectively used to enable a service robot
like Pepper, which has limited range of motion and poor control features, to
detect and grasp objects. We test the impact of our VS implementation and
demonstrate that the grasping is substantially more successful when we use VS
in contrast to the case when we use only motion planning without VS. The code
of the implementation is available to download in an open repository along with
the guidelines for the installation of the needed modules?. Additionally, given the
structure of the implementation, it can easily be extended to different objects
and other service robots.

This paper is organized as follows: Section 2 explains the state-of-the-art
methods for VS, Section 3 shows the implemented control technique and the
software used for the implementation, Section 4 details the pattern tracking
algorithm to obtain the position of the robot’s end-effector and the a marker-less
model based tracker that gives the object’s position. Finally, Section 5 analyses
the results and provides suggestions for future work.

2 State of the Art

In order to achieve a successful application that controls the motion of a robot
we need to combine VS and robot end-effector control techniques.

Regardless of the chosen control scheme we look to reduce the error over time,
e(t), between the actual and desired position of the end effector with respect to
the target [3]. This error is defined as:

e(t) = s(m(t),a) — s", 1)

where m(t) represents the set of visual measurements that are used to compute
a vector of k visual features s(m(t), a) [3]. a is the set of potential additional
data. This can be the camera intrinsic parameters or the 3D model of the object
to track. And s* is the vector that stores the desired values of the features or
desired final position.

3 https://bitbucket.org/paolaArdon/master thesis vs pepper
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2.1 Control and Visual Servoing

VS schemes vary on how to construct s and s* which influences on the interaction
matrix L and the robot end-effector configuration. There are two main configu-
rations for the robot end effector: (i) eye-in-hand, which is when the camera is
attached to the moving hand, thus moves with the end-effector, and, (ii) eye-to-
hand which is when the camera observes the target and the moving hand from
a fixed position. There are mainly three types of control techniques:

— Image based VS when usually the desired position is composed of the image
coordinates of different points belonging to the target.

— Pose based VS extracts the desired position from the 3D model of the object
which directly depends on the camera intrinsic parameters [3].

— Hybrid VS combines the advantages of both image based visual servoing
(IBVS) and PBVS techniques. However, it is highly sensitive to noise and it
is computational expensive [2].

2.2 Related Work

Many approaches have been directed towards the integration and implementa-
tion of robust VS techniques for reaching and grasping behaviours. These tech-
niques range from learning [10-13] to VS with marker-less objects using stereo
vision and edge detection [14].

One of the first studies on VS [15] used a real-time tracking algorithm in
conjunction with a predictive filter to allow a robotic arm to track a moving ob-
ject. The work [9] proposes a method to align the end effector with the tracking
target; [16] proposes new redundancy-based solutions to avoid robot joint limits
of a manipulator on virtual humanoid robots, [17] applies this redundancy solu-
tion on a walking HRP2-humanoid robot. In [18] the authors present a hybrid
visual servoing (HVS) control scheme for grasping that proves to be robust for
real-time applications. The paper [18] shows the robustness of the system with
ARMAR IIT arm robot; where the control scheme is based on estimating the
hand position, in case of failed visual hand tracking, with the combination of
visual, force and motor encoder data sensors.A similar study [19] demonstrates
an application which does not rely on force sensors for the reaching and grasping
but only on visual data. The paper [20] shows a combination of PBVS with a ro-
bust laser scanner that grabs features such as colour in an indoor environment.
This is combined with stereo measurements that ensures the efficiency of the
grasping action even if the object is unknown.

For this application we achieve a VS method that does not rely on data other
than the extracted from the visual sensors and therefore do not need stereo vision
for target pose calculation nor a 6-DOF manipulator. Our system can be applied
on real time applications using service robots with limited morphologies for the
grasping task.
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3 Proposed Solution & Architecture

In this section we focus on VS for the humanoid robot Pepper for which we apply
a PBVS with eye-in-hand and eye-to-hand configuration. In order to extract the
visual information, we use the bottom 2D camera, located in the mouth along
with the right end-effector of the robot.

The goal frame M, is equal to the transformation defining the position of
the object with respect to the camera, "* M., multiplied by a constant transfor-
mation °Mp, [19]. This constant transformation is learned by placing the hand
at the desired position with respect to the object, saving the vector h*. The
transformation defining the desired pose of the hand with respect to the camera
is then obtained as:

hx —1
‘M, = ( M, “Mo) (2)

In order to reduce the error of the hand, ej, we define the transformation
matrix of the current pose, h, in relation to the desired pose, h*, as "* M, =°
M ;*1 °M 0—1 ¢M,. The error of the current position of the hand with respect to
the target is given as:

hx
ep = ( t}“h* Huh)7 (3)

where "*¢, represents the translation and h*Qu,;, the rotation control of the
current position h with respect to the desired position h* of the manipulator.
The interaction matrix used in our approach is the one defined in [3] as:

h*
Ry 03
e ] (@

given that Lg, = I — $[u]x + (1 - sincG) [u]?

sinczg
bR, represents the rotation matrix that determines the orientation of the

current camera frame with respect to the desired frame. The control scheme is
expressed in joint space as [3]:

Gn = -Ate+ Prg (5)

where, X is the gain of the servo, J is a combination of the interaction matrix
and the articular Jacobian of the robot [21]. e is defined as e = s — s*, and
J. depends on the VS task. Py is the large projection operator that allows the
system to perform a secondary task [21]. It is defined in [3] as: Py = A(||e]|)Pje)+
(2—X(|le]]))Pe, where P. = (I, — J}J.) is the classical projector and P, is the
new projection operator that imposes the exponential decrease of the norm of
the error instead of each term of the error vector. The sigmoid function A(||e]|)
is used to switch from P to P [21]. g is a vector that defines the secondary
task [19]. In our case we use it to avoid joint limits so that the velocity controller
is more reliable.
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This approach produces a straight trajectory in the Cartesian space guaran-
teeing the exponential decay in the error measurement as seen in Fig. 4a. The
implementation of the PBVS for Pepper is represented in Fig. 1 where the fea-
tures and the desired position are obtained from the MBT. The hand tracker,
instead of coming from the robot’s odometry, comes from the tracking of the
patterns. The joints control in velocity is implemented through a joint velocity
control package from visual servoing platform (VISP) called pepper control [22].

INVERSE

CONTRCELAY KINEMATICS |

JOINTS ‘
— CONTROL

l— POSE ESTIMATE +—— MODEL

FEATURES

Fig. 1: Closed PBVS control scheme for Pepper humanoid robot.

3.1 System Considerations

Since Pepper’s arm has only 5-DOF, in our implementation we decided to use
an additional 1-DOF, the base. For the first stage, we apply a combination
of PBVS with eye-in-hand configuration, where the current position is defined
by the transformation matrix between the torso and the head-pitch joint, and
the goal position is the one defined by the box. The second stage consists of
a combination of PBVS with an eye-to-hand configuration, where the current
position is the one given by the right hand and the desired position is where
the hand should arrive to grasp the box. Pepper robot does not account with
accurate sensor measurements, thus we added markers on the end manipulator
to be tracked by vision, as explained in Section 4.

Secondly, a adaptive gain A is used to reduce the time of convergence in
order to speed up the servo. This parameter is manually set in the system. If its
value is too high there is a risk of oscillations at the time of convergence, which
compromises the precision of the method.

3.2 Software

We use Robotic Operating System (ROS) that facilitates libraries and tools to
help the development of robot applications [23]. Some of the third party libraries
used for this architecture are:
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— naoqi_driver is a driver module between Aldebaran’s NAOqiOS and ROS.
It publishes all sensor and actuator data to handle the behaviour and grasp-
ing tasks [24], [25].

— WhyCon libraries offer a vision-based tracker system specifically for low
frame rate cameras, just as Pepper’s [26].

— vision_visp which is a ROS node that provides VISP algorithms as ROS
components [27].

4 End Effector & Object Recognition

Due to the inaccuracy of the robot’s position control and sensing this task is
achieved with the help of vision by placing markers on the end effector. We
tested two methods for the hand tracking system:

1. Quick response code (QR) from OpenCV libraries [28-31].
2. Roundels detection from WhyCon Libraries which is the focus of this section.

Because of the low image resolution the detection and tracking is done with
the roundels detection which showed to be more robust, as seen in Fig. 2. This
method is solely based on the efficient detection of black and white roundels,
such as the ones shown in Fig. ?7. The roundels inner and outer diameter need
to be known. The tracking is divided in detections and location of these pat-
terns [32]. The detection combines a flood-fill segmentation algorithm with an
efficient thresholding technique [32].

The position of each circle, x., is calculated by eigen analysis, which is repre-
sented in camera coordinate frame. We are interested on getting the orientation
and position of Pepper’s hand. To achieve this we use four circular patterns,
following the scheme in [33], that helps us define the transformation between a
global  and the camera coordinate system ., represented as x = T'(x. — to),
where T is the similarity transformation matrix [32], and #, represents the co-
ordinate system origin. In our case we have xqg, 1,2, €3 to define ty as the
centre of mass of all the patterns. We calculate the transformation between the
vector ¢y (camera coordinate frame) and matrix T (global coordinate system),
which is the matrix of interest. We can see in Fig. 2 that both methods have

Accuracy rate (%)

QR-code Roundels
QR-code Roundels

(a) Accuracy rate. (b) Detection update.

Fig. 2: Comparison of recognition performance for both methods.
an acceptable time frame performance, under 200 ms. However, the roundels
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detection update is slightly faster than the QR codes (120ms vs 160ms). Fig. 2a
shows the accuracy rate of both detection methods where the roundels method
shows to be 25% higher than the QR codes, meaning that it is less likely to fail
at detecting the pattern.

To track our object we use a 3D MBT from VISP that allows the tracking of
a marker-less object when the computer-aided-design (CAD) model is provided.
The MBT is a twofold process [34]: (a) to extract the features of the object
we use the Kanadae-Lucas-Tomasi (KLT) method [35,36]; (b) to determine the
pose of the camera to match the features [34] we use a virtual VS to match the
tracked features with the obtained 3D model.

5 Results & Final Discussion

In this section we present the unified results of combining both tracking methods
and the PBVS eye-hand configuration to achieve a grasping application. The
system flow is shown in Fig. 3.

(d)

Fig.3: PBVS with Pepper humanoid robot. Before starting the servo of the
base, the system stores the homogeneous matrix relating the actual position
of the robot with the stored desired position, ¢cMdBoz. a) Using eye-in-hand
configuration: the blue vector shows the desired position. The error ey, is contin-
uously calculated during the servo of the base; b) using eye-to-hand: the matrix
describing the 3D position of the box with respect to the hand, ehM, and the
homogeneous matrix relating the actual box position with the desired position,
dhM, are calculated; c¢) the error e, for the manipulator is continuously calcu-
lated until it reaches approximately 0; and d) the system decides it is safe to
grasp the object and closes the end effector. The calculations are done using the
equations of Section 3.

The experiments are done on Linux Trusty system using a 5GHz network to
connect to the Naoqi 2.4 version on Pepper robot. We measure the number of
successful attempts. Specifically, for our purposes we consider a successful grasp
if the box is not dropped by the end-effector during the reaching process and
can be lifted-up. We consider a failed attempt whenever the box was dropped in
the process or if it was approached correctly but the robot did not lift it up.

Fig. 4a shows the exponential decrement of the error measurements in cm
and rad. Where:

— Ao = A(0) is the gain in 0, which is for very small values of ||e]],
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= Ao = AJje]|=ocA(]le]]) is the gain to infinity, which is for high values of |le]|,
— And, )\ is the slope of A at ||e|| =0

We obtain an average error of 1 mm and 5 deg. In this case, the task error arrives
to convergence in 17 seconds. A detailed image of the decay on the tasks error
for the arm VS can be seen on Fig. 4b.
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(b) Task error for the translation and rotation at grasping.

Fig. 4: Error measurements for: Ay = 0.7, Aox = 0.08 and A, = 3. Convergence
for the error = 17 sec.

We want to know the right value of the parameters so that our approach is as
efficient as possible. Given our implementation we care about tuning the adaptive
gain values. Fig. 5 shows the output of the applied velocities when we vary Ao.
Table. 1 shows a summary of the results from varying the \,, parameter. Where
we can compare the threshold values chosen for the translational and rotational
errors , ||ey, || and ||ey,|| respectively and their convergence time.

Table 1: Summary for tuning parameters

Aco [lew. I [lews || Conv. Time
0.02 1 mm 1 deg 30 sec
0.07 4 mm 3 deg 25 sec
0.1 6 mm 8 deg 12 sec

From Table. 1 we see that the higher the gain the faster the system arrives to
convergence, which is the case for Ao, = 0.1 where the convergence time is only
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12 seconds. On the down side for this case, the imprecision is higher. Table. 1 is
a summary of the error threshold used in the different cases of varying the gain.
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(a) Ao = 0.06, Ao = 0.02 and Xy = 3. Convergence: 30 sec.
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(b) Ao = 0.06, A\oo = 0.07 and \j = 3. Convergence: 25 sec.
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(c) Ao = 0.06, Aoo = 0.1 and A = 3. Convergence: 12 sec.
Fig.5: Varying Ao, on Pepper right hand joints.
In all the cases, changing our adaptive gain the system arrives to the goal
position travelling a relative straight line in the Cartesian space.
5.1 Discussion

We see that the combination of the hybrid marker-less MBT for the box, the
roundels tracker for Pepper’s hand along with an adaptive gain for the control
scheme allows for reasonable execution times, as observed on Table. 1 where the
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longest convergence time is 30 seconds. Given the modularity of the implemen-
tation it can easily be adapted to other humanoid robots and objects.

Fig. 5 shows the velocities discontinuities and oscillations. From the varying
Aso We observe that the applied velocities are high when the error exponential
decrement is high and small when the error decrement is small. The oscillations
are directly related to the Ay or Ao gain value.

The greater the A value the faster the system arrives to a convergence time,
as observed in table 1. However, the threshold error also needs to be greater so
that the robot does not drop the box during the reaching process. The system
achieves a precision of 1 mm and 1 deg when A is really small (0.02), however
it takes around half a minute to grasp the box. For our purposes we care more
about precision than computational time. Therefore we use a combination of
Ao = 0.07 but a Ag = 0.02 in the final implementation. As a result, we achieve
the position quite fast but reducing the oscillations when the error is small so
that we have a higher precision when grasping. For this task we take 28 seconds
to complete the arm PBVS task. Out of 25 consecutive trials Pepper successfully
grasped the object 17 times. Obtaining a sensitivity rate of 80%. Which means
that we rarely miss the target object.

During the different tests it was noticed that the attempts where Pepper
miss-predicted the goal position were the ones where the hybrid MBT fails.
Either it gets lost because of illumination, miss-calculates the features and/or is
not correctly initialized by the user.

5.2 Comparing Methods

As a summary, Table. 2 contrasts the reaching task by using Movelt! [37] with
our PBVS technique. Mowvelt! is a state-of-the-art software for manipulation
available with ROS which can be connected with Aldebaran [38] software.

Table 2: Comparing Movelt! and PBVS.

Movelt PBVS
Time (sec) 2.6 28
Success Rate 23.20% 72%
Sensitivity Rate 1 0.8

As observed in Table. 2, the final PBVS outperforms Movelt! software in
success grasping rate. We demonstrated that VS can be effectively used to enable
a service robot like Pepper, which has limited range of motion and low power
actuation, to detect and grasp objects. We test the impact of VS in this scheme
and demonstrate that the grasping is substantially more successful when we use
VS compared to the case when we use only motion planning.

6 Conclusions and Future Work

This work presents a grasping application for service robots with limited range
of motion and poor control features, to detect and grasp objects using a single
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camera for the visual feedback. We consider our application to have potential,
giving room to some extensions. Some of them being:

— The biggest setback in terms of processing is the tracking of the target

features through the network. Therefore a good improvement would be to
integrate this tracker into the robot’s central processing unit (CPU) instead
of having it running on the external computer.

— Both hands could be integrated into the servo alternating their usage.
— Remove the visual markers on the hand and integrate a MBT to track its

position instead.

— To initialize the target it needs to be inside the camera frame. A nice exten-

sion would be to add a tracking learning detection (TLD) tracker so that it
looks for the box in the room before initializing the MBT.
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