10 research outputs found

    Genetic diversity of Mycoplasma hyopneumoniae isolates of abattoir pigs

    Get PDF
    Mycoplasma hyopneumoniae, the causative agent of porcine enzootic pneumonia, is present in swine herds worldwide. However, there is little information on strains infecting herds in Canada. A total of 160 swine lungs with lesions suggestive of enzootic pneumonia originating from 48 different farms were recovered from two slaughterhouses and submitted for gross pathology. The pneumonic lesion scores ranged from 2% to 84%. Eighty nine percent of the lungs (143/160) were positive for M. hyopneumoniae by real-time PCR whereas 10% (16/160) and 8.8% (14/160) were positive by PCR for M. hyorhinis and M. flocculare, respectively. By culture, only 6% of the samples were positive for M. hyopneumoniae (10/160). Among the selected M. hyopneumoniae-positive lungs (n = 25), 9 lungs were co-infected with M. hyorhinis, 9 lungs with PCV2, 2 lungs with PRRSV, 12 lungs with S. suis and 10 lungs with P. multocida. MLVA and PCR-RFLP clustering of M. hyopneumoniae revealed that analyzed strains were distributed among three and five clusters respectively, regardless of severity of lesions, indicating that no cluster is associated with virulence. However, strains missing a specific MLVA locus showed significantly less severe lesions and lower numbers of bacteria. MLVA and PCR-RFLP analyses also showed a high diversity among field isolates of M. hyopneumoniae with a greater homogeneity within the same herd. Almost half of the field isolates presented less than 55% homology with selected vaccine and reference strains

    Coinfections and their molecular consequences in the porcine respiratory tract

    Get PDF
    Understudied, coinfections are more frequent in pig farms than single infections. In pigs, the term “Porcine Respiratory Disease Complex” (PRDC) is often used to describe coinfections involving viruses such as swine Influenza A Virus (swIAV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), and Porcine CircoVirus type 2 (PCV2) as well as bacteria like Actinobacillus pleuropneumoniae, Mycoplasma hyopneumoniae and Bordetella bronchiseptica. The clinical outcome of the various coinfection or superinfection situations is usually assessed in the studies while in most of cases there is no clear elucidation of the fine mechanisms shaping the complex interactions occurring between microorganisms. In this comprehensive review, we aimed at identifying the studies dealing with coinfections or superinfections in the pig respiratory tract and at presenting the interactions between pathogens and, when possible, the mechanisms controlling them. Coinfections and superinfections involving viruses and bacteria were considered while research articles including protozoan and fungi were excluded. We discuss the main limitations complicating the interpretation of coinfection/superinfection studies, and the high potential perspectives in this fascinating research field, which is expecting to gain more and more interest in the next years for the obvious benefit of animal health

    Intra-Species and Inter-Species Differences in Cytokine Production by Porcine Antigen-Presenting Cells Stimulated by Mycoplasma hyopneumoniae, M. hyorhinis, and M. flocculare

    No full text
    Mycoplasma hyorhinis and M. flocculare are commonly co-isolated with M. hyopneumoniae (primary agent of swine enzootic pneumonia) in gross pneumonia-like lesions, but their involvement in the disease process remains unknown. T cells play an immuno-pathological role during mycoplasmal infections. Dendritic cells (DCs) are major antigen-presenting cells involved in T cell activation and differentiation. In this study, we investigated cytokine (IL-6, IL-8, IL-10, IL-12, and TNF-α) production by porcine bone-marrow-derived DCs (BM-DCs) stimulated by M. hyopneumoniae, M. hyorhinis, and/or M. flocculare. Results showed that cytokine production levels were relatively homogenous for all evaluated M. hyopneumoniae strains in contrast to M. hyorhinis and M. flocculare strains. The most noteworthy inter-species differences were the overall (i) lower IL-12 production capacity of M. hyopneumoniae, and (ii) higher TNF-α production capacity of M. flocculare. Co-stimulation of BM-DCs showed that M. hyorhinis dominated the IL-12 production independently of its association with M. hyopneumoniae or M. flocculare. In addition, a decreased BM-DC production of TNF-α was generally observed in the presence of mycoplasma associations. Lastly, M. flocculare association with M. hyopneumoniae increased BM-DC ability to secrete IL-10. A higher cytotoxicity level in BM-DCs stimulated by M. hyorhinis was also observed. Overall, this study demonstrated that the combination of M. hyorhinis or M. flocculare with M. hyopneumoniae may participate to the modulation of the immune response that might affect the final disease outcome

    Update on the Mechanisms of Antibiotic Resistance and the Mobile Resistome in the Emerging Zoonotic Pathogen Streptococcus suis

    No full text
    Streptococcus suis is a zoonotic pathogen causing important economic losses in swine production. The most commonly used antibiotics in swine industry are tetracyclines, beta-lactams, and macrolides. Resistance to these antibiotics has already been observed worldwide (reaching high rates for macrolides and tetracyclines) as well as resistance to aminoglycosides, fluoroquinolones, amphenicols, and glycopeptides. Most of the resistance mechanisms are encoded by antibiotic resistance genes, and a large part are carried by mobile genetic elements (MGEs) that can be transferred through horizontal gene transfer. This review provides an update of the resistance genes, their combination in multidrug isolates, and their localization on MGEs in S. suis. It also includes an overview of the contribution of biofilm to antimicrobial resistance in this bacterial species. The identification of resistance genes and study of their localization in S. suis as well as the environmental factors that can modulate their dissemination appear essential in order to decipher the role of this bacterium as a reservoir of antibiotic genes for other species

    Human meningitis due to Streptococcus suis in Lomé, Togo: a case report

    No full text
    Abstract Background Streptococcus suis is a zoonotic pathogen which represents the leading cause of meningitis in Southeast Asia and an emerging pathogen in the Western world, the main risk factor for infection being contact with pigs. In Africa, the prevalence of S. suis infections in swine and humans is largely unrecognized, with only one recent report of a limited case series. Case presentation We describe a human case of meningitis due to S. suis in a 32-year-old man living in Togo. The patient had no particular medical history and no risk factors for immunodeficiency but reported regular contact with pork products. Using specific immunological and molecular methods, we characterized the isolate as S. suis serotype 2, ST1, one the most prevalent and virulent clone worldwide. The outcome was favorable after one week of adapted antibiotic therapy but the patient was left with severe hearing disorders. Conclusions This work highlights the emergence of this pathogen in Africa and reinforces the need for accurate epidemiological and surveillance studies of S. suis infections and for educating clinicians and exposed groups in non-endemic countries

    Novel Streptococcus suis Sequence Type 834 among Humans, Madagascar

    No full text
    Two cases of meningitis caused by Streptococcus suis occurred in Madagascar, 1 in 2015 and 1 in 2016. We report the characterization of the novel sequence type, 834, which carried the mrp+/sly+/epf+ virulence marker and a mutation G→T at position 174, leading to a substitution mutS1 to mutS284
    corecore