42 research outputs found

    Nitrous Oxide Profiling from Infrared Radiances (NOPIR): Algorithm Description, Application to 10 Years of IASI Observations and Quality Assessment

    Get PDF
    Nitrous oxide (N2_{2}O) is the third most abundant anthropogenous greenhouse gas (after carbon dioxide and methane), with a long atmospheric lifetime and a continuously increasing concentration due to human activities, making it an important gas to monitor. In this work, we present a new method to retrieve N2_{2}O concentration profiles (with up to two degrees of freedom) from each cloud-free satellite observation by the Infrared Atmospheric Sounding Interferometer (IASI), using spectral micro-windows in the N2_{2}O ν3_{3} band, the Radiative Transfer for TOVS (RTTOV) tools and the Tikhonov regularization scheme. A time series of ten years (2011–2020) of IASI N2_{2}O profiles and integrated partial columns has been produced and validated with collocated ground-based Network for the Detection of Atmospheric Composition Change (NDACC) and Total Carbon Column Observing Network (TCCON) data. The importance of consistency in the ancillary data used for the retrieval for generating consistent time series has been demonstrated. The Nitrous Oxide Profiling from Infrared Radiances (NOPIR) N2_{2}O partial columns are of very good quality, with a positive bias of 1.8 to 4% with respect to the ground-based data, which is less than the sum of uncertainties of the compared values. At high latitudes, the comparisons are a bit worse, due to either a known bias in the ground-based data, or to a higher uncertainty in both ground-based and satellite retrievals

    Tyrosine kinase signalling in breast cancer: Epidermal growth factor receptor and c-Src interactions in breast cancer

    Get PDF
    Both the non-receptor tyrosine kinase, c-Src, and members of the epidermal growth factor (EGF) receptor family are overexpressed in high percentages of human breast cancers. Because these molecules are plasma membrane-associated and involved in mitogenesis, it has been speculated that they function in concert with one another to promote breast cancer development and progression. Evidence to date supports a model wherein c-Src potentiates the survival, proliferation and tumorigenesis of EGF receptor family members, in part by associating with them. Phosphorylation of the EGF receptor by c-SRC is also critical for mitogenic signaling initiated by the EGF receptor itself, as well as by several G-protein coupled receptors (GPCRs), a cytokine receptor, and the estrogen receptor. Thus, c-Src appears to have pleiotropic effects on cancer cells by modulating the action of multiple growth-promoting receptors

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    Imbalance in sex hormone levels exacerbates diabetic renal disease

    No full text
    Studies suggest that the presence of testosterone exacerbates, whereas the absence of testosterone attenuates, the development of nondiabetic renal disease. However, the effects of the absence of testosterone in diabetic renal disease have not been studied. The study was performed in male Sprague-Dawley nondiabetic, streptozotocin-induced diabetic, and streptozotocin-induced castrated rats (n=10 to 11 per group) for 14 weeks. Diabetes was associated with the following increases: 3.2-fold in urine albumin excretion, 6.3-fold in glomerulosclerosis, 6.0-fold in tubulointerstitial fibrosis, 1.6-fold in collagen type I, 1.2-fold in collagen type IV, 1.3-fold in transforming growth factor-β protein expression, and 32.7-fold in CD68-positive cell abundance. Diabetes was also associated with a 1.3-fold decrease in matrix metalloproteinase protein expression and activity. Castration further exacerbated all of these parameters. Diabetes was also associated with a 4.7-fold decrease in plasma testosterone, 2.9-fold increase in estradiol, and 2.1-fold decrease in plasma progesterone levels. Castration further decreased plasma testosterone levels but had no additional effects on plasma estradiol and progesterone. These data suggest that diabetes is associated with abnormal sex hormone levels that correlate with the progression of diabetic renal disease. Most importantly, our results suggest an important role for sex hormones in the pathophysiology of diabetic renal complications. © 2008 American Heart Association, Inc
    corecore