207 research outputs found

    Can stigmatizing attitudes be prevented in psychology students?

    Get PDF
    Background: Stigmatizing attitudes have been found among psychology students in many studies, and they are becoming more common with time. Aims: This study examines whether participation in clinical psychology lessons reduces levels of stigmatization in a population of psychology students and whether it leads to any change in stigmatization. Methods: The study is a pre/post evaluation of the effectiveness of clinical psychology lessons (63 hours of lectures) as a tool to fight stigma. The presence of stigmatizing attitudes was detected using the Italian version of the Attribution Questionnaire-27 (AQ-27-I). Stigmatization was described before and after the lessons with structured equation modeling (SEM). Results: Of a total of 387 students contacted, 302 (78.04%) agreed to be involved in the study, but only 266 (68.73%) completed the questionnaires at both t0 and t1. A statistically significant reduction was seen in all six scales and the total score on the AQ-27-I. The models defined by the SEM (pre- and post-intervention) showed excellent model fit indices and described different dynamics of the phenomenon of stigma. Conclusions: A cycle of clinical psychology lessons can be a useful tool for reducing stigmatizing attitudes in a population of students seeking a psychology degree

    Picosecond timescale tracking of pentacene triplet excitons with chemical sensitivity

    Get PDF
    Singlet fission is a photophysical process in which an optically excited singlet exciton is converted into two triplet excitons. Singlet fission sensitized solar cells are expected to display a greatly enhanced power conversion efficiency compared to conventional singlejunction cells, but the efficient design of such devices relies on the selection of materials capable of harvesting triplets generated in the fission chromophore. To this aim, the possibility of measuring triplet exciton ynamics with chemical selectivity paves the way for the rational design of complex heterojunctions, with optimized triplet conversion. Here we exploit the chemical sensitivity of X-ray absorption spectroscopy to track triplet exciton dynamics at the picosecond timescale in multilayer films of pentacene, the archetypal singlet fission material. We experimentally identify the signature of the triplet exciton in the Carbon K-edge absorption spectrum and measure its lifetime of about 300 ps. Our results are supported by state-of-the-art ab initio calculations

    VizieR Online Data Catalog: Zeeman effect in sulfur monoxide (SO) (Cazzoli+, 2017)

    Get PDF
    The complete list of measured Zeeman components of sulfur monoxide (SO). (1 data file)

    TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations

    Get PDF
    TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy–cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe–Salpeter methods, second-order Møller–Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE’s functionality, including excited-state methods, RPA and Green’s function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE’s current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE’s development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted

    TURBOMOLE: Today and Tomorrow

    Get PDF
    TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, light–matter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLE’s functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches. Select features under development are reviewed to illustrate the continuous growth of the program suite, including nuclear electronic orbital methods, Hartree–Fock-based adiabatic connection models, simplified time-dependent density functional theory, relativistic effects and magnetic properties, and multiscale modeling of optical properties

    The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry

    Get PDF
    The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design
    corecore