74 research outputs found

    Integration assessment of the hybrid sulphur cycle with a copper production plant

    Get PDF
    Copper is the third-most widely-used metal worldwide. However, copper processing is an energy-intensive process consuming large quantities of fossil fuels, both as the reducing agent and for energy which contributes significantly to anthropogenic carbon dioxide emissions. The hybrid sulphur cycle combines concentrating solar thermal energy with electrolysis to offer strong potential for low-cost green hydrogen production. A preliminary evaluation is reported of the techno-economic potential of this cycle to displace current fossil-based energy sources in an integrated copper mine and refinery (cradle-to-gate approach) at a remote location in Australia with an excellent solar resource. The effect of ore composition on the integration of the hybrid sulphur cycle and copper processing plant is evaluated using models developed in Aspen Plus. The evaluations show that sizing the hybrid sulphur cycle cycle to meet the oxygen demand of the copper refining process is more technoeconomically viable than sizing the hybrid sulphur cycle to meet the hydrogen required to replace the fossil fuel demand of the copper processing process. Moreover, it has been found that the integration of the hybrid sulphur cycle with the copper process plant has the potential to decrease both the carbon dixoide emissions and the operational expenditure of copper refineries for ores with a sufficiently high sulphide content (~50% mass fraction)

    Metal hydrides for concentrating solar thermal power energy storage

    Get PDF
    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost for Concentrating Solar-thermal Power (CSP). We focus on the underlying technology that allows metal hydrides to function as Thermal Energy Storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room-temperature and as high as 1100 oC. The potential of metal hydrides for thermal storage is explored while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature thermal energy storage are also addressed

    Outlook and challenges for hydrogen storage in nanoporous materials

    Get PDF
    Considerable progress has been made recently in the use of nanoporous materials for hydrogen storage. In this article, the current status of the field and future challenges are discussed, ranging from important open fundamental questions, such as the density and volume of the adsorbed phase and its relationship to overall storage capacity, to the development of new functional materials and complete storage system design. With regard to fundamentals, the use of neutron scattering to study adsorbed H2, suitable adsorption isotherm equations, and the accurate computational modelling and simulation of H2 adsorption are discussed. The new materials covered include flexible metal-organic frameworks, core-shell materials, and porous organic cage compounds. The article concludes with a discussion of the experimental investigation of real adsorptive hydrogen storage tanks, the improvement in the thermal conductivity of storage beds, and new storage system concepts and designs.Scopu

    Operating Characteristics of Metal Hydride-Based Solar Energy Storage Systems

    No full text
    Thermochemical energy storage systems, based on a high-temperature metal hydride coupled with a low-temperature metal hydride, represent a valid option to store thermal energy for concentrating solar power plant applications. The operating characteristics are investigated for a tandem hydride bed energy storage system, using a transient lumped parameter model developed to identify the technical performance of the proposed system. The results show that, without operational control, the system undergoes a thermal ratcheting process, causing the metal hydride concentrations to accumulate hydrogen in the high-temperature bed over time, and deplete hydrogen in the low temperature. This unbalanced system is compared with a ’thermally balanced’ system, where the thermal ratcheting is mitigated by thermally balancing the overall system. The analysis indicates that thermally balanced systems stabilize after the first few cycles and remain so for long-term operation, demonstrating their potential for practical thermal energy storage system applications
    • …
    corecore