5,164 research outputs found

    Isotopic replacement in ionic systems: the 4He2+ + 3He -> 3He4He+ + 4He reaction

    Full text link
    Full quantum dynamics calculations have been carried out for the ionic reaction 4He2+ + 3He and state-to-state reactive probabilities have been obtained using both a time-dependent (TD) and a time-independent (TI) approach. An accurate ab-initio potential energy surface has been employed for the present quantum dynamics and the two sets of results are shown to be in agreement with each other. The results for zero total angular momentum suggest a marked presence of atom exchange (isotopic replacement) reaction with probabilities as high as 60%. The reaction probabilities are only weakly dependent on the initial vibrational state of the reactants while they are slightly more sensitive to the degree of rotational excitation. A brief discussion of the results for selected higher total angular momentum values is also presented, while the l-shifting approximation [1] has been used to provide estimates of the total reaction rates for the title process. Such rates are found to be large enough to possibly become experimentally accessible

    Viscoplasticity and large-scale chain relaxation in glassy-polymeric strain hardening

    Full text link
    A simple theory for glassy polymeric mechanical response which accounts for large scale chain relaxation is presented. It captures the crossover from perfect-plastic response to strong strain hardening as the degree of polymerization NN increases, without invoking entanglements. By relating hardening to interactions on the scale of monomers and chain segments, we correctly predict its magnitude. Strain activated relaxation arising from the need to maintain constant chain contour length reduces the NN dependence of the characteristic relaxation time by a factor ∌ϔ˙N\sim \dot\epsilon N during active deformation at strain rate ϔ˙\dot\epsilon. This prediction is consistent with results from recent experiments and simulations, and we suggest how it may be further tested experimentally.Comment: The theoretical treatment of the mechanical response has been significantly revised, and the arguments for coherent relaxation during active deformation made more transparen

    Fabrication of optically smooth Sn thin films

    Full text link
    The fabrication of optically smooth thin Sn films by vacuum or electrodeposition techniques is usually challenging. Little has been published on how to address this challenge mainly because very few applications require such smooth Sn surfaces. The excitation of surface plasmon polaritons on Sn surfaces by prism-based methods represents a case that requires very smooth surfaces and has motivated this work. It is shown that the deposition rate and the substrate temperature of a vacuum evaporation method can be optimized to obtain very smooth Sn films and this is supported by direct imaging evidence from atomic force microscopy and scanning electron microscopy.Comment: 7 figure

    The [4+2]‐Cycloaddition of α‐Nitrosoalkenes with Thiochalcones as a Prototype of Periselective Hetero‐Diels–Alder Reactions—Experimental and Computational Studies

    Get PDF
    The [4+2]‐cycloadditions of α‐nitrosoalkenes with thiochalcones occur with high selectivity at the thioketone moiety of the dienophile providing styryl‐substituted 4H‐1,5,2‐oxathiazines in moderate to good yields. Of the eight conceivable hetero‐Diels–Alder adducts only this isomer was observed, thus a prototype of a highly periselective and regioselective cycloaddition has been identified. Analysis of crude product mixtures revealed that the α‐nitrosoalkene also adds competitively to the thioketone moiety of the thiochalcone dimer affording bis‐heterocyclic [4+2]‐cycloadducts. The experiments are supported by high‐level DFT calculations that were also extended to related hetero‐Diels–Alder reactions of other nitroso compounds and thioketones. These calculations reveal that the title cycloadditions are kinetically controlled processes confirming the role of thioketones as superdienophiles. The computational study was also applied to the experimentally studied thiochalcone dimerization, and showed that the 1,2‐dithiin and 2H‐thiopyran isomers are in equilibrium with the monomer. Again, the DFT calculations indicate kinetic control of this process

    Site-specific cleavage of duplex DNA by a semisynthetic nuclease via triple-helix formation.

    Full text link

    Reconciling Semiclassical and Bohmian Mechanics: III. Scattering states for continuous potentials

    Full text link
    In a previous paper [J. Chem. Phys. 121 4501 (2004)] a unique bipolar decomposition, Psi = Psi1 + Psi2 was presented for stationary bound states Psi of the one-dimensional Schroedinger equation, such that the components Psi1 and Psi2 approach their semiclassical WKB analogs in the large action limit. The corresponding bipolar quantum trajectories, as defined in the usual Bohmian mechanical formulation, are classical-like and well-behaved, even when Psi has many nodes, or is wildly oscillatory. A modification for discontinuous potential stationary stattering states was presented in a second paper [J. Chem. Phys. 124 034115 (2006)], whose generalization for continuous potentials is given here. The result is an exact quantum scattering methodology using classical trajectories. For additional convenience in handling the tunneling case, a constant velocity trajectory version is also developed.Comment: 16 pages and 14 figure

    Elasticity Theory Connection Rules for Epitaxial Interfaces

    Full text link
    Elasticity theory provides an accurate description of the long-wavelength vibrational dynamics of homogeneous crystalline solids, and with supplemental boundary conditions on the displacement field can also be applied to abrupt heterojunctions and interfaces. The conventional interface boundary conditions, or connection rules, require that the displacement field and its associated stress field be continuous through the interface. We argue, however, that these boundary conditions are generally incorrect for epitaxial interfaces, and we give the general procedure for deriving the correct conditions, which depend essentially on the detailed microscopic structure of the interface. As a simple application of our theory we analyze in detail a one-dimensional model of an inhomogeneous crystal, a chain of harmonic oscillators with an abrupt change in mass and spring stiffness parameters. Our results have implications for phonon dynamics in nanostructures such as superlattices and nanoparticles, as well as for the thermal boundary resistance at epitaxial interfaces.Comment: 7 pages, Revte

    Dissociative electron attachment to the H2O molecule. II. Nuclear dynamics on coupled electronic surfaces within the local complex potential model

    Get PDF
    We report the results of a first-principles study of dissociative electron attachment to H2O. The cross sections are obtained from nuclear dynamics calculations carried out in full dimensionality within the local complex potential model by using the multi-configuration time-dependent Hartree method. The calculations employ our previously obtained global, complex-valued, potential-energy surfaces for the three (doublet B1, doublet A1, and doublet B2) electronic Feshbach resonances involved in this process. These three metastable states of H2O- undergo several degeneracies, and we incorporate both the Renner-Teller coupling between the B1 and A1 states as well as the conical intersection between the A1 and B2 states into our treatment. The nuclear dynamics are inherently multidimensional and involve branching between different final product arrangements as well as extensive excitation of the diatomic fragment. Our results successfully mirror the qualitative features of the major fragment channels observed, but are less successful in reproducing the available results for some of the minor channels. We comment on the applicability of the local complex potential model to such a complicated resonant system.Comment: Corrected version of Phys Rev A 75, 012711 (2007

    Effective Temperatures of a Driven System Near Jamming

    Get PDF
    Fluctuations in a model of a sheared, zero-temperature foam are studied numerically. Five different quantities that reduce to the true temperature in an equilibrium thermal system are calculated. All five have the same shear-rate dependence, and three have the same value. Near the onset of jamming, the relaxation time is the same function of these three temperatures in the sheared system as of the true temperature in an unsheared system. These results imply that statistical mechanics is useful for the system and provide strong support for the concept of jamming.Comment: 4 pages, 4 postscript figure
    • 

    corecore