84 research outputs found

    Determining Glucose Isomerization Mechanisms on Lewis Acidic Beta Zeolites Using Isotropic Tracer Studies and 1H NMR

    Get PDF
    Biofuels synthesized from biomass sources are becoming necessary for sustainable production due to their significantly lower net CO2 production than fuels synthesized from fossil-based carbon sources such as petroleum. Catalytic pathways for the primary biomass-to-biofuels reaction pathway include the isomerization of glucose to fructose, which can be catalyzed by either Lewis acids or bases. Isolated metal atoms and metal oxide particles on Beta zeolites serve as active sites that catalyze this reaction through a Lewis acid 1,2-intramolecular hydride shift or by a Lewis base proton transfer mechanism, respectively. The Lewis acid mechanism has proven to have higher fructose selectivity than the Lewis base mechanism. Determining the glucose-fructose isomerization mechanism provides critical information about the active site placement in catalysts prepared by different methods, making it an ideal test of quality control for new material syntheses. Using glucose reactants deuterated at the second carbon, catalytic reaction mechanisms could be determined by tracing the location of the deuterium atom in the sugar products using 1H NMR spectroscopy. Comparison of fructose product spectra with an unlabeled fructose standard was used to show that glucose isomerization to fructose followed the Lewis acidic pathway on the samples in this study. The outcomes of these isotopic labeling studies provide insight into the placement of Lewis acid metals in zeolite frameworks and help to further understand this important step in biomass conversion to biofuels

    Singlet-triplet energy gaps modulation of Diindeno [1,2-b: 1’2’-g] anthracene molecular family

    Get PDF
    Nowadays there is a large interest in organic materials based on diradical polycyclic aromatic hydrocarbons (PAHs) due to their unique properties, such as narrow frontier-orbital energy gaps, strong absorption in the visible spectrum, etc. However, the inherent diradical nature make these compounds with limited chemical stability giving rise to rapid decomposition under ambient conditions thus reducing their practical use. In recent years PAH diradicals that exhibit remarkable stability have been prepared thanks to the description of efficient synthetic routes to access them. One of these remarkable cases is the diindeno [1,2-b: 1’2’-g] anthracene, named as DIAn. DIAn is constituted by antiaromatic segments together with a central pro-aromatic structure. One of the important observable properties of diradicals is the singlet-triplet energy gap, ∆EST, which is intimately connected with the diradical character. The possibility of access to the molecular structure of diradicals is very valuable since properties such as the bond-order or the bond-length alternation of the mentioned moieties reveal the diradical content. Electronic and vibrational spectroscopies are alternative sources of structural information that often compensate the absence of solid-state structures. In this communication, we expand the studies of DIAn by introducing another aspect of the modulation of the ∆EST which concerns with: i) the extension of the terminal benzenes with another fused benzene (i.e., forming terminal napthalenes) and ii) with the isomerization resulting from the fusion topology of these terminal benzenes. We will present a UV-Vis-NIR and Raman spectroscopic study of the new compounds. The variation of the spectra within molecular family will be discussed in connection with the variation of ∆EST and with the diradical character of the new molecules.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Deactivation of Sn-Beta zeolites caused by structural transformation of hydrophobic to hydrophilic micropores during aqueous-phase glucose isomerization

    Get PDF
    The structural changes underlying the deactivation of Sn-Beta zeolites under aqueous-phase reaction conditions at elevated temperatures (373 K) are investigated using spectroscopic characterization and site titration techniques together with turnover rates for glucose isomerization, a well-understood probe reaction for which changes in measured rates can be ascribed to specific changes in catalyst structure. In the case of hydrophobic, low-defect Sn-Beta zeolites (Sn-Beta-F), treatment in hot liquid water (373 K) for short times (3 h) to hot liquid water causes turnover rates to decrease and approach values characteristic of hydrophilic, defect-rich Sn-Beta zeolites (Sn-Beta-OH). In contrast, turnover rates on hydrophilic Sn-Beta-OH zeolites are insensitive to the duration of hot liquid water exposure prior to reaction. Activation and deactivation phenomena on Sn-Beta-F zeolites occur concomitantly with the formation of silanol defects (by ∼2–10×) with increasing durations (0–24 h) of hot water treatment, despite negligible differences in open and closed Sn site speciation as quantified ex situ by CD_3CN IR spectra. Mechanistic interpretations of these phenomena suggest that silanol groups present at low densities serve as binding sites for water molecules and clusters, which confer enthalpic stability to kinetically-relevant hydride-shift transition states and increase turnover rates, while silanol groups present in higher densities stabilize extended hydrogen-bonded water networks, which entropically destabilize kinetically-relevant transition states and decrease turnover rates. Intraporous voids within hydrophobic Sn-Beta-F zeolites become increasingly hydrophilic as silanol groups are formed by hydrolysis of framework siloxane bridges with increasing durations of water treatment, thereby decreasing aqueous-phase glucose isomerization turnover rates (per open Sn site). These findings suggest design strategies that suppress framework hydrolysis would attenuate the deactivation of Lewis acid zeolites in aqueous media

    Deactivation of Sn-Beta zeolites caused by structural transformation of hydrophobic to hydrophilic micropores during aqueous-phase glucose isomerization

    Get PDF
    The structural changes underlying the deactivation of Sn-Beta zeolites under aqueous-phase reaction conditions at elevated temperatures (373 K) are investigated using spectroscopic characterization and site titration techniques together with turnover rates for glucose isomerization, a well-understood probe reaction for which changes in measured rates can be ascribed to specific changes in catalyst structure. In the case of hydrophobic, low-defect Sn-Beta zeolites (Sn-Beta-F), treatment in hot liquid water (373 K) for short times (3 h) to hot liquid water causes turnover rates to decrease and approach values characteristic of hydrophilic, defect-rich Sn-Beta zeolites (Sn-Beta-OH). In contrast, turnover rates on hydrophilic Sn-Beta-OH zeolites are insensitive to the duration of hot liquid water exposure prior to reaction. Activation and deactivation phenomena on Sn-Beta-F zeolites occur concomitantly with the formation of silanol defects (by ∼2–10×) with increasing durations (0–24 h) of hot water treatment, despite negligible differences in open and closed Sn site speciation as quantified ex situ by CD_3CN IR spectra. Mechanistic interpretations of these phenomena suggest that silanol groups present at low densities serve as binding sites for water molecules and clusters, which confer enthalpic stability to kinetically-relevant hydride-shift transition states and increase turnover rates, while silanol groups present in higher densities stabilize extended hydrogen-bonded water networks, which entropically destabilize kinetically-relevant transition states and decrease turnover rates. Intraporous voids within hydrophobic Sn-Beta-F zeolites become increasingly hydrophilic as silanol groups are formed by hydrolysis of framework siloxane bridges with increasing durations of water treatment, thereby decreasing aqueous-phase glucose isomerization turnover rates (per open Sn site). These findings suggest design strategies that suppress framework hydrolysis would attenuate the deactivation of Lewis acid zeolites in aqueous media

    Harnessing Transcriptionally driven chromosomal instability adaptation to target therapy-refractory lethal prostate cancer.

    Get PDF
    Metastatic prostate cancer (PCa) inevitably acquires resistance to standard therapy preceding lethality. Here, we unveil a chromosomal instability (CIN) tolerance mechanism as a therapeutic vulnerability of therapy-refractory lethal PCa. Through genomic and transcriptomic analysis of patient datasets, we find that castration and chemotherapy-resistant tumors display the highest CIN and mitotic kinase levels. Functional genomics screening coupled with quantitative phosphoproteomics identify MASTL kinase as a survival vulnerability specific of chemotherapy-resistant PCa cells. Mechanistically, MASTL upregulation is driven by transcriptional rewiring mechanisms involving the non-canonical transcription factors androgen receptor splice variant 7 and E2F7 in a circuitry that restrains deleterious CIN and prevents cell death selectively in metastatic therapy-resistant PCa cells. Notably, MASTL pharmacological inhibition re-sensitizes tumors to standard therapy and improves survival of pre-clinical models. These results uncover a targetable mechanism promoting high CIN adaptation and survival of lethal PCa

    Towards the clinical implementation of pharmacogenetics in bipolar disorder.

    Get PDF
    BackgroundBipolar disorder (BD) is a psychiatric illness defined by pathological alterations between the mood states of mania and depression, causing disability, imposing healthcare costs and elevating the risk of suicide. Although effective treatments for BD exist, variability in outcomes leads to a large number of treatment failures, typically followed by a trial and error process of medication switches that can take years. Pharmacogenetic testing (PGT), by tailoring drug choice to an individual, may personalize and expedite treatment so as to identify more rapidly medications well suited to individual BD patients.DiscussionA number of associations have been made in BD between medication response phenotypes and specific genetic markers. However, to date clinical adoption of PGT has been limited, often citing questions that must be answered before it can be widely utilized. These include: What are the requirements of supporting evidence? How large is a clinically relevant effect? What degree of specificity and sensitivity are required? Does a given marker influence decision making and have clinical utility? In many cases, the answers to these questions remain unknown, and ultimately, the question of whether PGT is valid and useful must be determined empirically. Towards this aim, we have reviewed the literature and selected drug-genotype associations with the strongest evidence for utility in BD.SummaryBased upon these findings, we propose a preliminary panel for use in PGT, and a method by which the results of a PGT panel can be integrated for clinical interpretation. Finally, we argue that based on the sufficiency of accumulated evidence, PGT implementation studies are now warranted. We propose and discuss the design for a randomized clinical trial to test the use of PGT in the treatment of BD

    The pipeline project:Pre-publication independent replications of a single laboratory's research pipeline

    Get PDF
    This crowdsourced project introduces a collaborative approach to improving the reproducibility of scientific research, in which findings are replicated in qualified independent laboratories before (rather than after) they are published. Our goal is to establish a non-adversarial replication process with highly informative final results. To illustrate the Pre-Publication Independent Replication (PPIR) approach, 25 research groups conducted replications of all ten moral judgment effects which the last author and his collaborators had "in the pipeline" as of August 2014. Six findings replicated according to all replication criteria, one finding replicated but with a significantly smaller effect size than the original, one finding replicated consistently in the original culture but not outside of it, and two findings failed to find support. In total, 40% of the original findings failed at least one major replication criterion. Potential ways to implement and incentivize pre-publication independent replication on a large scale are discussed. (C) 2015 The Authors. Published by Elsevier Inc.</p

    Data from a pre-publication independent replication initiative examining ten moral judgement effects

    Get PDF
    We present the data from a crowdsourced project seeking to replicate findings in independent laboratories before (rather than after) they are published. In this Pre-Publication Independent Replication (PPIR) initiative, 25 research groups attempted to replicate 10 moral judgment effects from a single laboratory's research pipeline of unpublished findings. The 10 effects were investigated using online/lab surveys containing psychological manipulations (vignettes) followed by questionnaires. Results revealed a mix of reliable, unreliable, and culturally moderated findings. Unlike any previous replication project, this dataset includes the data from not only the replications but also from the original studies, creating a unique corpus that researchers can use to better understand reproducibility and irreproducibility in science
    • …
    corecore