250 research outputs found

    Gas-grain models for interstellar anion chemistry

    Full text link
    Long-chain hydrocarbon anions CnH- (n=4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n_{H_2} >~ 10^5 cm^{-3}). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H- anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally-stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment

    Isotopic Anomalies in Primitive Solar System Matter: Spin-state Dependent Fractionation of Nitrogen and Deuterium in Interstellar Clouds

    Get PDF
    Organic material found in meteorites and interplanetary dust particles is enriched in D and 15N. This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar nebula. Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and 15N and can account for the largest isotopic enrichments measured in carbonaceous meteorites. However, more recent measurements have shown that, in some primitive samples, a large 15N enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, 15N enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H2, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both 15N and D in dense cloud cores. We also show that while the nitriles, HCN and HNC, contain the greatest 15N enrichment, this is not expected to correlate with extreme D enrichment. These calculations therefore support the view that Solar System 15N and D isotopic anomalies have an interstellar heritage. We also compare our results to existing astronomical observations and briefly discuss future tests of this model.Comment: Submitted to ApJ

    Models for Cometary Comae Containing Negative Ions

    Get PDF
    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [I]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of our new models for the chemistry of cometary comae that include atomic and molecular anions. We calculate the impact of these anions on the charge balance and examine their importance for cometary coma chemistry

    Negative Ion Chemistry in the Coma of Comet 1P/Halley

    Get PDF
    Negative ions (anions) were identified in the coma of comet 1P/Halley from in-situ measurements performed by the Giotto spacecraft in 1986. These anions were detected with masses in the range 7-110 amu, but with insufficient mass resolution to permit unambiguous identification. We present details of a new chemical-hydrodynamic model for the coma of comet Halley that includes - for the first time - atomic and molecular anions, in addition to a comprehensive hydrocarbon chemistry. Anion number densities arc calculated as a function of radius in the coma, and compared with the Giotto results. Important anion production mechanisms arc found to include radiative electron attachment, polar photodissociation, dissociative electron attachment, and proton transfer. The polyyne anions C4H(-) and C6H(-) arc found to be likely candidates to explain the Giotto anion mass spectrum in the range 49-73 amu. Thc CN(-) anion probably makes a significant contribution to the mass spectrum at 26 amu. Larger carbon-chain anions such as C8H(1) can explain the peak near 100 amu provided there is a source of large carbon-chain-bearing molecules from the cometary nucleus

    Measuring molecular abundances in comet C/2014 Q2 (Lovejoy) using the APEX telescope

    Get PDF
    Comet composition provides critical information on the chemical and physical processes that took place during the formation of the Solar system. We report here on millimetre spectroscopic observations of the long-period bright comet C/2014 Q2 (Lovejoy) using the Atacama Pathfinder Experiment (APEX) band 1 receiver between 2015 January UT 16.948 to 18.120, when the comet was at heliocentric distance of 1.30 AU and geocentric distance of 0.53 AU. Bright comets allow for sensitive observations of gaseous volatiles that sublimate in their coma. These observations allowed us to detect HCN, CH3OH (multiple transitions), H2CO and CO, and to measure precise molecular production rates. Additionally, sensitive upper limits were derived on the complex molecules acetaldehyde (CH3CHO) and formamide (NH2CHO) based on the average of the strongest lines in the targeted spectral range to improve the signal-to-noise ratio. Gas production rates are derived using a non-LTE molecular excitation calculation involving collisions with H2O and radiative pumping that becomes important in the outer coma due to solar radiation. We find a depletion of CO in C/2014 Q2 (Lovejoy) with a production rate relative to water of 2 per cent, and relatively low abundances of Q(HCN)/Q(H2O), 0.1 per cent, and Q(H2CO)/Q(H2O), 0.2 per cent. In contrast the CH3OH relative abundance Q(CH3OH)/Q(H2O), 2.2 per cent, is close to the mean value observed in other comets. The measured production rates are consistent with values derived for this object from other facilities at similar wavelengths taking into account the difference in the fields of view. Based on the observed mixing ratios of organic molecules in four bright comets including C/2014 Q2, we find some support for atom addition reactions on cold dust being the origin of some of the molecules.Comment: 10 pages, 7 figures, to be published in MNRA

    On the ubiquity of molecular anions in the dense interstellar medium

    Get PDF
    Results are presented from a survey for molecular anions in seven nearby Galactic star-forming cores and molecular clouds. The hydrocarbon anion C6H- is detected in all seven target sources, including four sources where no anions have been previously detected: L1172, L1389, L1495B and TMC-1C. The C6H-/C6H column density ratio is greater than about 1.0% in every source, with a mean value of 3.0% (and standard deviation 0.92%). Combined with previous detections, our results show that anions are ubiquitous in dense clouds wherever C6H is present. The C6H-/C6H ratio is found to show a positive correlation with molecular hydrogen number density, and with the apparent age of the cloud. We also report the first detection of C4H- in TMC-1 (at 4.8-sigma confidence), and derive an anion-to-neutral ratio C4H-/C4H = (1.2 +- 0.4) x 10^-5 (= 0.0012 +- 0.0004%). Such a low value compared with C6H- highlights the need for a revised radiative electron attachment rate for C4H. Chemical model calculations show that the observed C4H- could be produced as a result of reactions of oxygen atoms with C5H- and C6H-

    Abundance Measurements of Titan's Stratospheric HCN, HC3_3N, C3_3H4_4, and CH3_3CN from ALMA Observations

    Get PDF
    Previous investigations have employed more than 100 close observations of Titan by the Cassini orbiter to elucidate connections between the production and distribution of Titan's vast, organic-rich chemical inventory and its atmospheric dynamics. However, as Titan transitions into northern summer, the lack of incoming data from the Cassini orbiter presents a potential barrier to the continued study of seasonal changes in Titan's atmosphere. In our previous work (Thelen et al., 2018), we demonstrated that the Atacama Large Millimeter/submillimeter Array (ALMA) is well suited for measurements of Titan's atmosphere in the stratosphere and lower mesosphere (~100-500 km) through the use of spatially resolved (beam sizes <1'') flux calibration observations of Titan. Here, we derive vertical abundance profiles of four of Titan's trace atmospheric species from the same 3 independent spatial regions across Titan's disk during the same epoch (2012 to 2015): HCN, HC3_3N, C3_3H4_4, and CH3_3CN. We find that Titan's minor constituents exhibit large latitudinal variations, with enhanced abundances at high latitudes compared to equatorial measurements; this includes CH3_3CN, which eluded previous detection by Cassini in the stratosphere, and thus spatially resolved abundance measurements were unattainable. Even over the short 3-year period, vertical profiles and integrated emission maps of these molecules allow us to observe temporal changes in Titan's atmospheric circulation during northern spring. Our derived abundance profiles are comparable to contemporary measurements from Cassini infrared observations, and we find additional evidence for subsidence of enriched air onto Titan's south pole during this time period. Continued observations of Titan with ALMA beyond the summer solstice will enable further study of how Titan's atmospheric composition and dynamics respond to seasonal changes.Comment: 15 pages, 16 figures, 2 tables. Accepted for publication in Icarus, September 201

    The Chemistry of Extragalactic Carbon Stars

    Get PDF
    Prompted by the ongoing interest in Spitzer Infrared Spectrometer spectra of carbon stars in the Large Magellanic Cloud, we have investigated the circumstellar chemistry of carbon stars in low-metallicity environments. Consistent with observations, our models show that acetylene is particularly abundant in the inner regions of low metallicity carbon-rich asymptotic giant branch stars - more abundant than carbon monoxide. As a consequence, larger hydrocarbons have higher abundances at the metallicities of the Magellanic Clouds than in stars with solar metallicity. We also find that the oxygen and nitrogen chemistry is suppressed at lower metallicity, as expected. Finally, we calculate molecular line emission from carbon stars in the Large and Small Magellanic Cloud and find that several molecules should be readily detectable with the Atacama Large Millimeter Array at Full Science operations
    • …
    corecore