2,588 research outputs found
QCALT: a tile calorimeter for KLOE-2 upgrade
The upgrade of the DANE machine layout requires a modification of the
size and position of the inner focusing quadrupoles of KLOE-2 thus asking for
the realization of two new calorimeters covering the quadrupoles area. To
improve the reconstruction of events with photons hitting the
quadrupoles a calorimeter with high efficiency to low energy photons (20-300
MeV), time resolution of less than 1 ns and space resolution of few cm, is
needed. To match these requirements, we are designing a tile calorimeter,
QCALT, where each single tile is readout by mean of SiPM for a total
granularity of 2400 channels. We show first tests of the different calorimeter
components
Energy spectra of quasiperiodic systems via information entropy
We study the relationship between the electronic spectrum structure and the
configurational order of one-dimensional quasiperiodic systems. We take the
Fibonacci case as an specific example, but the ideas outlined here may be
useful to accurately describe the energy spectra of general quasiperiodic
systems of technological interest. Our main result concerns the {\em
minimization} of the information entropy as a characteristic feature associated
to quasiperiodic arrangements. This feature is shown to be related to the
ability of quasiperiodic systems to encode more information, in the Shannon
sense, than periodic ones. In the conclusion we comment on interesting
implications of these results on further developments on the issue of
quasiperiodic order.Comment: REVTeX 3.0, 8 pages, 3 figures available on request from FD-A
([email protected]), Phys Rev E submitted, MA/UC3M/02/9
Energy and time resolution for a LYSO matrix prototype of the Mu2e experiment
We have measured the performances of a LYSO crystal matrix prototype tested
with electron and photon beams in the energy range 60450 MeV. This study has
been carried out to determine the achievable energy and time resolutions for
the calorimeter of the Mu2e experiment.Comment: 2 pages, 3 figures, 13th Pisa Meeting on Advanced Detector
Design, status and perspective of the Mu2e crystal calorimeter
The Mu2e experiment at Fermilab will search for the charged lepton flavor
violating process of neutrino-less coherent conversion in the field
of an aluminum nucleus. Mu2e will reach a single event sensitivity of about
that corresponds to four orders of magnitude improvements
with respect to the current best limit. The detector system consists of a straw
tube tracker and a crystal calorimeter made of undoped CsI coupled with Silicon
Photomultipliers. The calorimeter was designed to be operable in a harsh
environment where about 10 krad/year will be delivered in the hottest region
and work in presence of 1 T magnetic field. The calorimeter role is to perform
/e separation to suppress cosmic muons mimiking the signal, while
providing a high level trigger and a seeding the track search in the tracker.
In this paper we present the calorimeter design and the latest RD results.Comment: 4 pages, conference proceeding for a presentation held at TIPP'2017.
To be published on Springer Proceedings in Physic
Quality Assurance on a custom SiPMs array for the Mu2e experiment
The Mu2e experiment at Fermilab will search for the coherent
conversion on aluminum atoms. The detector system consists of a straw tube
tracker and a crystal calorimeter. A pre-production of 150 Silicon
Photomultiplier arrays for the Mu2e calorimeter has been procured. A detailed
quality assur- ance has been carried out on each SiPM for the determination of
its own operation voltage, gain, dark current and PDE. The measurement of the
mean-time-to-failure for a small random sample of the pro-production group has
been also completed as well as the determination of the dark current increase
as a function of the ioninizing and non-ioninizing dose.Comment: 4 pages, 10 figures, conference proceeding for NSS-MIC 201
Measurement of the atmospheric muon flux with the NEMO Phase-1 detector
The NEMO Collaboration installed and operated an underwater detector
including prototypes of the critical elements of a possible underwater km3
neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box.
The detector was developed to test some of the main systems of the km3
detector, including the data transmission, the power distribution, the timing
calibration and the acoustic positioning systems as well as to verify the
capabilities of a single tridimensional detection structure to reconstruct muon
tracks. We present results of the analysis of the data collected with the NEMO
Mini-Tower. The position of photomultiplier tubes (PMTs) is determined through
the acoustic position system. Signals detected with PMTs are used to
reconstruct the tracks of atmospheric muons. The angular distribution of
atmospheric muons was measured and results compared with Monte Carlo
simulations.Comment: Astrop. Phys., accepte
NEMO: A Project for a km Underwater Detector for Astrophysical Neutrinos in the Mediterranean Sea
The status of the project is described: the activity on long term
characterization of water optical and oceanographic parameters at the Capo
Passero site candidate for the Mediterranean km neutrino telescope; the
feasibility study; the physics performances and underwater technology for the
km; the activity on NEMO Phase 1, a technological demonstrator that has
been deployed at 2000 m depth 25 km offshore Catania; the realization of an
underwater infrastructure at 3500 m depth at the candidate site (NEMO Phase 2).Comment: Proceeding of ISCRA 2006, Erice 20-27 June 200
Measurement of the Associated Production Cross Section in Collisions at TeV
We present the first measurement of associated direct photon + muon
production in hadronic collisions, from a sample of 1.8 TeV
collisions recorded with the Collider Detector at Fermilab. Quantum
chromodynamics (QCD) predicts that these events are primarily from the Compton
scattering process , with the final state charm quark producing
a muon. Hence this measurement is sensitive to the charm quark content of the
proton. The measured cross section of is compared to a
leading-order QCD parton shower model as well as a next-to-leading-order QCD
calculation.Comment: 12 pages, 4 figures Added more detailed description of muon
background estimat
- …
